
0 
 

 

 

 

CENG 492 

 

TEST SPECIFICATION REPORT 

FOR THE ELERON 

 

 

 

 

 

ÇAĞLAR GÜNDOĞDU - 1679000 

SAMET CAN - 1678812 

EMRE AKSAN - 1678655 

OKAN HARPUT - 1679042 

 

 

 

 

 

 

14.04.2013 

 

 

 

 

 

  



1 
 

Contents 
1. Introduction ..................................................................................................................................... 3 

1.1 Problem Definition .................................................................................................................. 3 

1.2 Purpose .................................................................................................................................... 3 

1.3 Scope of Document ................................................................................................................. 3 

2. Test Plan .......................................................................................................................................... 4 

2.1 Test Environment .......................................................................................................................... 4 

2.1.1 Minimum System Requirements ............................................................................................ 4 

2.1.2 Softwares Used ....................................................................................................................... 4 

2.2 Features to Be Tested .................................................................................................................... 5 

2.2.1 Pre-game tests ........................................................................................................................ 5 

2.2.2 In-game tests .......................................................................................................................... 5 

2.2.3 RTI tests .................................................................................................................................. 5 

3. Test Procedures ............................................................................................................................... 6 

3.1 Main Scenario .......................................................................................................................... 6 

3.2 Test Cases ................................................................................................................................ 7 

3.2.1 Environment Determination ...................................................................................................... 7 

3.2.2 Agent Number Specification ...................................................................................................... 8 

3.2.3 Game Name Specification .......................................................................................................... 9 

3.2.4 Player Name Specification ........................................................................................................ 10 

3.2.5 Button Configuration ................................................................................................................ 11 

3.2.6 Graphics Configuration ............................................................................................................. 12 

3.2.7 Graphics Configuration ............................................................................................................. 13 

3.2.8 Spacecraft Selection ................................................................................................................. 14 

3.2.9 Game Log Content .................................................................................................................... 15 

3.2.10 AI Patrolling ............................................................................................................................ 16 

3.2.11 Federation Initialization ......................................................................................................... 17 

3.2.12  Pause ..................................................................................................................................... 18 

3.2.13  Mini Map ............................................................................................................................... 19 

3.2.14  Attack Enemy ......................................................................................................................... 20 

3.2.15  Join to federation .................................................................................................................. 21 

3.2.16  Control of Movements .......................................................................................................... 22 

3.2.17  Fire ......................................................................................................................................... 23 

3.2.18  Hit .......................................................................................................................................... 24 



2 
 

3.2.19  Collision ................................................................................................................................. 25 

3.2.20  Zoom In/Out .......................................................................................................................... 26 

3.3 High-Order Testing ................................................................................................................ 27 

3.3.1 Stress Testing ................................................................................................................. 27 

3.3.2 Performance Testing ............................................................................................................ 27 

3.3.3 Alpha & Beta Testing ..................................................................................................... 28 

 

  



3 
 

1. Introduction 

1.1 Problem Definition 

A lot of humans, animals, vehicles are interacting with each other on a daily basis and these 

interactions may vary in a large-scale. Often understanding and estimating the behaviors of these 

agents is a hard task. To understand, estimate the interactions of these agents in a large crowd or 

even visualization is a common problem due to some reasons such as cost of real demonstrations, 

security issues, etc. For these very specific cases where visualization of the behaviors of agents is 

important simulation technology helps us. 

While imitating the real world and gathering realistic responses are possible, simulating many agents 

can be costly and usually ineffective with common simulation techniques. The need for crowd 

simulation arises when a scene calls for more characters than can be practically animated using 

conventional systems. 

To meet these needs, we are going to develop the software called “The Eleron”. This software is 

basically a game which includes crowd simulation, artificial intelligence and multi-player concept. 

In this game, military vehicles such as combat aircrafts, helicopters, and maps will be supported in 

3D. 

In the game, two or more players will fight against each other as two teams. These teams also 

include AI controlled units. In pre-game, the players are expected to specify some predefined rules. 

These rules refer map of the game, weather conditions, formation of the AI units, aircraft types and 

behaviors of the AI units. 

1.2 Purpose 

The purpose of the test process is to reveal critical bugs, misbehaviors and performance problems of 
The Eleron efficiently and as early as possible, so that they can be corrected with minimum effort. 
The testing process will allow us to improve our system to become user-friendly, free of bugs and 

performance problems as much as possible. 
 

1.3 Scope of Document 

This document briefly describes the testing process of The Eleron project. As in fact the testing 

process is continuous from the starting date of the project to the end date, this document also 

includes some information about how the testing has been done up till now in the project. However, 

the main aim and the scope of this document is to present the testing plan for the remaining part of 

the project in which the implementation is considered to be nearly complete. 

 

  



4 
 

2. Test Plan 

2.1 Test Environment 

During the testing following softwares and minimum system requirements will be used.   

2.1.1 Minimum System Requirements 

1. Windows: XP SP2 or later; Mac OS X: Intel CPU & "Snow Leopard" 10.6 or later. Note that the 

Eleron was not tested on server versions of Windows and OS X. 

2. Java(TM) Platform, Standard Edition Runtime Environment 7 

3. Graphics card with DirectX 9 level (shader model 2.0) capabilities. Any card made since 2004 

should work. 

4. Using Occlusion Culling requires GPU with Occlusion Query support (some Intel GPUs do not 

support that). 

5. Keyboard and Mouse 

 

2.1.2 Softwares Used 

2.1.2.1 Unity 

Unity (also called Unity3D) is a cross-platform game engine with a built-in IDE developed by Unity 

Technologies. It is used to develop video games for web plugins, desktop platforms, consoles and 

mobile devices, and is utilized by over one million developers.Unity is primarily used to create mobile 

and web games, but can also deploy games to consoles or the PC. The game engine was developed in 

C/C++, and is able to support code written in C#, JavaScript or Boo. It grew from an OS X supported 

game development tool in 2005 to the multi-platform game engine that it is today. 

2.1.2.2 MonoDevelop 

MonoDevelop is an open source integrated development environment for the Linux platform, Mac 

OS X,and Microsoft Windows, primarily targeted for the development of software that uses both the 

Mono and Microsoft .NET frameworks. MonoDevelop integrates features similar to those of 

NetBeans and Microsoft Visual Studio, such as automatic code completion, source control, a 

graphical user interface (GUI) and Web designer. MonoDevelop integrates a Gtk# GUI designer called 

Stetic. It currently has language support for C#, Java, Boo, Visual Basic.NET, Oxygene, CIL, Python, 

Vala, C and C++. 

  



5 
 

2.2 Features to Be Tested 

Here are the main features of individual parts of “The Eleron” system to be tested. 
 

2.2.1 Pre-game tests :  These tests involves the tests should be done before playing the 

game. 

1.  Configuring buttons 

2.  Selecting spacecrafts, environment and  number of agents 

3. Transitions between create game, start game, join game screens 

4. Player name, game name specifications 

5. Interactions of pre-game actions with portico 

2.2.2 In-game tests: These tests involves the tests should be done when playing the game. 

1. Spacecraft movement control 

2. Fire, hit, collision detection 

3. Pause, zoom, health bar, minimap, log information control 

4. Controlling AI units actions such as follow, attack, patrolling 

2.2.3 RTI tests: These tests involves the tests should be done both before the game and 

while playing the game in the RTI side of the “The Eleron”. 

1. Federation creation 

2. Joining federation 

3. Controlling data flow between unity and portico.  

  



6 
 

3. Test Procedures 

3.1 Main Scenario 

We prepared a generic scenario that involves all specific test cases we have written. By simply 

following this scenario, a tester can easily check all of the test cases. 

1. The user starts “theeleron.exe”. 

2. The user changes screen resolution, graphics quality and button configuration on the opened 

screen. 

3. The user starts game by pressing “Play!” 

4. Main game menu screen is displayed. 

5. If user is host player: 

a. User clicks new game. 

b. In create game menu screen host player enters game name, player name, specifies agent 

number, chooses environment and spacecraft type. 

c. User clicks create game. 

d. Screen is changed to wait menu and the federation is created in RTI with the name of 

game name, and the federate named with player name joins the federation. 

e. Host player waits for other players to join the federation and click the ready button. 

f. Host player clicks start game button. 

6. If user is joining player: 

a. User clicks join game. 

b. In join game menu, specifies player name and selects spacecraft, and enters game 

name. 

c. User clicks join game button. 

d. Screen is changed to wait menu and if there is a federation with the corresponding 

game name, the user federate joins the federation and a success message is 

displayed on the screen. If the federation does not exist, an error message is 

displayed. 

e. The user clicks ready button. 

7. The game starts. 

8. The player orders a bot to patrol around the team base. 

9. The player moves to the enemy base by controlling spacecraft. All enable movements are 

applied.  

10. The player interacts with an enemy. 

11. The player starts attacking and hits the enemy and destroys the enemy. 

12. In the log screen, the hit and destroyed events are displayed. 

13. An enemy player moves towards the ally base. 

14. The bots interact with the enemy, and notify the real players. 

  



7 
 

3.2 Test Cases 

3.2.1 Environment Determination 

 

Test Case ID TC1 

Test Case Name Environment Determination 

Test Case Description The user can select the game environment, before the game started. 

Test Case Objective 
To check that game starts with the selected game environment 
according to the user selection in pre-game menu. 

Pre-conditions The user must start the game. 

Steps 

1. The user must be in pre-game menu. 
2. The user must select “New Game. 
3. The user must select one of the available environments from 

“Map ” section. 

Expected System Response 

1. Game starts with the selected environment in pre-game 
menu. 

2. If user does not select an environment game starts with the 
default environment “Deep Space Green With Planet”. 

 

 

 

 

 

 

 

 

 

 

 

 

  



8 
 

3.2.2 Agent Number Specification 

Test Case ID TC2 

Test Case Name Agent Number Specification 

Test Case Description 
The user can set the number of agents in game, before the game 
started. 

Test Case Objective 
To check that game starts with the selected number of agents 
according to the user selection in pre-game menu. 

Pre-conditions The user must starte the game. 

Steps 

1.    The user must be in pre-game menu. 
2. The user must select “New Game”. 
3. The user must enter the number of agents to “Agent 

Number” section. 

Expected System Response 

1. Game starts with entered number of agents in pre-game 
menu. 

2. If the user does not enter number of agents game starts 
without agents. 

3. If the user enters a number greater than 10 and tries to start 
game, game does not start and warns the user that limit is 
10 and waits user to re-enter number. 

 

  



9 
 

3.2.3 Game Name Specification 

Test Case ID TC3 

Test Case Name Game Name Specification 

Test Case Description The user can set the game name, before the game started. 

Test Case Objective 
To check that game starts with the selected game name according to 
the user selections in pre-game menu. 

Pre-conditions The user must  start the game. 

Steps 

1. The user must be in pre-game menu. 
2. The user must select “New Game”. 
3. The user must enter the name of game to “Game Name” 

section. 

Expected System Response 

1. Federation with the entered game name is created in RTI 
side of game. 

2. If the user does not enter a name and starts the game, 
player name is set to default as “Game (Number)”. 

 



10 
 

3.2.4 Player Name Specification 

Test Case ID TC4 

Test Case Name Player Name Specification 

Test Case Description The user can set the player name, before the game started. 

Test Case Objective 
To check that player starts the game with the selected player game 
according to the user selections in pre-game menu. 

Pre-conditions The user must start the game. 

Steps 

1. The user must be in pre-game menu. 
2. The user must select “New Game” or “Join Game”. 
3. The user must enter the number of agents to “Agent 

Number” section. 

Expected System Response 

1. Federate with the entered player name is created in RTI side 
of game. 

2. If the user does not enter a name and starts the game, 
player name is set to default as “Player (Number)”. 

 

  



11 
 

3.2.5 Button Configuration 

Test Case ID TC5 

Test Case Name Button Configuration 

Test Case Description The user can configure the buttons, before the game started. 

Test Case Objective 
To check that game starts with the selected button configuration 
according to the user selections in pre-game menu. 

Pre-conditions The user must be started the game. 

Steps 

1. The user must run the “The Eleron.exe” 
2. The user must click the “Input“ tab of the opened 

configuration window. 
3. The user must double click the button configuration which 

he/she wants to change. 
4. The user must enter a key from keyboard to set button 

function. 
 
 

Expected System Response 

1. Game starts according to button configuration done by the 
user. 

2. If the user does not configure the vuttons before game starts 
default button configurations are used. Which are: 

a. D/d – Right 
b. A/a – Left 
c. W/w – Up 
d. S/s – Down 
e. Left Mouse – Fire 
f. Mouse Scroll – Zoom In/Out 
g. Q/q – Rotate Left Around Forward Axis 
h. E/e – Rotate Right Around Forward Axis 

 

 

 

 

 

 

 

  



12 
 

3.2.6 Graphics Configuration 

Test Case ID TC6 

Test Case Name Graphics Configuration 

Test Case Description The user can configure the graphic settings, before the game started. 

Test Case Objective 
To check that game starts with the selected graphic configurations 
according to the user selections in pre-game menu. 

Pre-conditions The user must be started the game. 

Steps 

1. The user must run the “The Eleron.exe” 
2. The user must click the “Graphics“ tab of the opened 

configuration window. 
3. The user must set the screen resolution from the dropdown 

menu in “Screen Resolution” section. 
4. The user must set the quality of the graphics from the 

dropdown menu in “Graphics Quality” section. 
5. The user must check the “Windowed” check box from the 

“Graphics” tab. 
 

Expected System Response 

1. Game starts according to graphics configuration done by the 
user. 

2. If user does not set the graphics settings before game 
started game starts with the default settings which is 
“640x480” resolution and “Good” quality and “Windowed 
options” 

 

 

 

 

 

  



13 
 

3.2.7 Graphics Configuration 

Test Case ID TC7 

Test Case Name Space Craft Selection 

Test Case Description 
The user can set the his/her own space craft model, before the game 
started. 

Test Case Objective 
To check that game starts with the selected space craft model 
according to the user selection in pre-game menu. 

Pre-conditions The user must be started the game. 

Steps 

1. The user must select “New Game” or “Join Game”. 
2. The user must be in pre-game menu. 
3. The user select the one of the available models from “Space 

Craft” section. 

Expected System Response 

1. Game starts with selected space craft model  in pre-game 
settings. 

2. If user does not select a space craft model it starts with the 
default space craft model which is “Sci-Fi Hammer Head 
Patrol Cruiser”. 

 

 

  



14 
 

3.2.8 Spacecraft Selection 

Test Case ID TC8 

Test Case Name Spacecraft Selection 

Test Case Description The users simply select one of the provided spaceship models. 

Test Case Objective 
To check that the users are controlling the spaceships that they 
selected in pre-game screen. 

Pre-conditions 1. User is in create or join game menu. 

Steps 
1. Some spacecraft models are provided in boxes. 
2. The user clicks one of these boxes to select one.  

Expected System Response 

1. Selected spaceship model is bound to the user specific game 
object. 

2. If the user does not make any selection, the default (first 
one) spacecraft is used. 

3. When the game starts, the user controls selected spaceship. 

 

  



15 
 

3.2.9 Game Log Content 

Test Case ID TC9 

Test Case Name Game log content 

Test Case Description During game flow, some specific events appear in game log screen. 

Test Case Objective 
To check whether the predefined events are announced in the log 
panel. 

Pre-conditions 
1. Game is started. 
2. Log panel is not closed. 

Steps 

1. The users encounter with events: 
a. Hit the enemy, 
b. Destroy the enemy 

2. Or the bots: 
a) Detect enemy ships around, 
b) Hit an enemy, 
c) Destroy the enemy 

Expected System Response 

1. An event specific message is appeared in the log panels of all 
players such that “Player X destroys player Y”, “Player X is 
damaged by Y” and etc. 

 

  



16 
 

3.2.10 AI Patrolling 

Test Case ID TC10 

Test Case Name AI Patrolling 

Test Case Description 
The ai-controlled units may patrol in a specific region to detect 
enemy ships or to defend that spot. 

Test Case Objective 
To check whether the bots act according to the given commands 
during patrol. 

Pre-conditions 
1. Game is started. 
2. There are bots in the game. 

Steps 

1. Bot is given order to patrol around a region. 
2. Bot is ordered to report an enemy when it encounters with 

or attack to the encountered enemy. 
3. Bot starts patrolling. 

Expected System Response 

1. Bot flight around. 
2. If bot is encountered with an enemy ship: 

a) If it is ordered to attack, it reports the coordinates 
and simply attacks. 

b) If it is only ordered to report, it reports the event 
and avoids fighting. 

 

  



17 
 

3.2.11 Federation Initialization 

Test Case ID TC11 

Test Case Name Federation Initialization 

Test Case Description 

Federation creation is the key role of the game creation and joins. In 
the first place, the federation corresponding to the game name is 
initialized. 

Test Case Objective 
To handle prospective errors, unexpected situations/inputs from the 
client side. 

Pre-conditions 1. The user is in the create game screen. 

Steps 
1. The user sends game creation request with a specific game 

name by clicking the “Create Game” button. 

Expected System Response 

1. Portico side accepts the request and starts the runtime 
module to create federation.  

a) If there is an already existing federation with 
specified game, return the user an alert to choose 
different game. 

b) If there exists portico specific network errors, notify 
the user about errors. 

c) If the federation is successfully created, send the 
client side a confirmation. 

2. In the client side, the screen is changed and the response 
message is appeared on the new screen. 
 

 

  



18 
 

3.2.12  Pause 

Test Case ID TC12 

Test Case Name Pause 

Test Case Description The user pauses game (simulation). 

Test Case Objective To check that game paused or not. 

Pre-conditions The game is already running. 

Steps 1. The user presses “ESC” button of keyboard. 

Expected System Response 

1. The game should be paused.  
2. Spacecraft should not be able to move. 
3. AI users also should be paused. 
4. Menu panel(Continue, Restart, Quit options) should be 

shown. 

 

  



19 
 

3.2.13  Mini Map 

Test Case ID TC13 

Test Case Name Mini map 

Test Case Description 
The system shall provide the user with the functionality that he/she 
can see current locations of all planes in game. 

Test Case Objective 
To check that the system provides current locations of all planes in 
game in a mini map. 

Pre-conditions The game is already running. 

Steps 
1. When the User starts game the in left corner of GUI map will 

be opened automatically.  

Expected System Response 

1. In this map, teammates, opponents and battles will be 
shown according to these specifications. 

2. Team mates will be represented by green arrow. 
3.  Opponents will be represented by red cross. 
4. When a battle begins exclamation point of battle location. 
5. Skull for a destroyed plane coordinates. 

 

 

  



20 
 

3.2.14  Attack Enemy 

Test Case ID TC14 

Test Case Name Attack Enemy 

Test Case Description 
When the enemy is in attack range, the AI units shall fire to the 
enemy. 

Test Case Objective To check that the AI units fire to enemies which are in attack range. 

Pre-conditions 
1. The game is already running. 
2. An enemy unit must be in attack range. 

Steps 1. The user gets closer to the enemies with AI-agents. 

Expected System Response 

1. An AI-agent should attack to the enemy. 
2. If the enemy gets out of range, AI-agents stop following and 

attacking. 

 

  



21 
 

3.2.15  Join to federation 

Test Case ID TC15 

Test Case Name Join to federation 

Test Case Description The new federate joins the federation. 

Test Case Objective To check that the new federate is able to join federation or not. 

Pre-conditions 

1. One of the user creates the game (Federation is created.) 
2. Creator user’s network information must be known. 

(Federation name and its network information (IP, port) 
must be known.) 

3. The user who wants to join a game sees the menu panel 
(Create, Join menu). 

Steps 1. The user pressed join button. 

Expected System Response 

1. Unity side sends information about that user to the RTI side 
(Portico). 

2. In portico, federate join the federation. 
3. When federate joins the federation, portico side sends this 

information to unity side. 
4. If join operation is 

                                   Successful: The user should join the game. 
                                   Unsuccessful: error message should send the 
unity side, and error message is shown by the user in unity screen. 

 

  



22 
 

3.2.16  Control of Movements 

Test Case ID TC16 

Test Case Name Control of Movements 

Test Case Description 
The user can control the movements of the character from the 
keyboard. 

Test Case Objective 
To check that according to user inputs from the keyboard, controller 
movements are correct.  

Pre-condition The game has already started. 

Steps 

1. The user presses “left arrow” button on the keyboard. 
2. The user presses “right arrow” button on the keyboard. 
3. The user presses “up arrow” button on the keyboard. 
4. The user presses “down arrow” button on the keyboard. 
5. The user presses “space” button on the keyboard. 
6. The user presses “q” button on the keyboard. 
7. The user presses “e” button on the keyboard 

Expected System Response 

1. When user presses “left arrow” button, the spacecraft turns 
left. 

2. When user presses “right arrow” button, the spacecraft turns 
right. 

3. When user presses “up arrow” button, the spacecraft 
ascends. 

4. When user presses “down arrow” button, the spacecraft 
descends. 

5. When user presses “space” button, the spacecraft 
accelerates. 

6. When user presses “q” button, the spacecraft rotates  
around its forward direction to the left. 

7. When user presses “e” button, the spacecraft rotates  
around its forward direction to the right. 

 

  



23 
 

3.2.17  Fire 

Test Case ID TC17 

Test Case Name Fire 

Test Case Description The user can fire from the spacecraft. 

Test Case Objective 
To check that when user presses mouse left button, lasers are 
generated and can be seen on the screen. 

Pre-condition The game has already started. 

Steps                                                          1. The user presses mouse left button. 

Expected System Response 

1. On left and right sides of the aircraft, lasers are generated. 
2. Lasers move forward in the forward direction of the 

spacecraft. 
3. If lasers hit some object, they explodes. 
4. If they do not hit any object, they are destroyed after 10 

seconds. 
 

 

  



24 
 

3.2.18  Hit 

Test Case ID TC18 

Test Case Name Hit 

Test Case Description Objects get hit when interact with lasers.   

Test Case Objective 
To check when lasers hit some objects, that objects have little 
explosions. 

Pre-conditions Any user fires.  

Steps 1. Lasers hit some objects.  

Expected System Response 

1. If the object lasers hit is not spacecraft, they have little 
explosions on their surfaces. 

2. If the object lasers hit is spacecraft, spacecraft has explosions 
on its surface and health value of the spacecraft on the 
health bar is decreased. Also log information about which 
spacecraft is hit has shown on the log screen.  

3. If health value of the spacecraft equals 0, the spacecraft is 
destroyed and dissappears. “spacecraft x is destroyed” log 
information shown on the log screen. 
 

 

  



25 
 

3.2.19  Collision 

Test Case ID TC19 

Test Case Name Collision 

Test Case Description The spacecrafts collides some objects. 

Test Case Objective 
To check whether collision detection works, when spaceraft collides 
some objects.   

Pre-conditions The user is playing game.  

Steps 

1. The user controls spacecraft 
2. The spacecraft collides other spacecrafts , meteors or user 

bases. 

Expected System Response 
1. When spacecrafts collides any objects in the game, 

spacecraft has exploded and destroyed.  

 

 

 

 

  



26 
 

3.2.20  Zoom In/Out 

Test Case ID TC20 

Test Case Name Zoom In / Out 

Test Case Description 
The user can zooms to see the objects in the game closer or far 
away. 

Test Case Objective 
To check whether zoom operation works when user use zoom 
option.  

Pre-conditions The user is playing game.  

Steps 
1. The user rotates mouse wheel forward. 
2. The user rotates mouse wheel backward. 

Expected System Response 

1. When user rotates mouse wheel forward, the objects can be 
seen in more details and closer. 

2. When user rotates mouse wheel backward, the objects can 
be seen in less details and far away. 

  



27 
 

3.3 High-Order Testing 

3.3.1 Stress Testing 

Stress testing involves two main approaches: 

3.3.1.1 Game engine test 

There will be many game objects such as spaceships, team bases, meteors, planets, skybox and lasers 

etc. There will also be some special effects to provide virtual reality. Because there is a limit for the 

Unity3d game engine to render the scene, the amount of these objects and effects must be well 

defined. We plan to test the scene with 3 basic scenarios:  

1. There will be 2 players and small number of meteors. There will not be any team bases, lasers 

and effects.  

2. There will be 6 players and small number of meteors, team bases and planets in the 

environment. The players will fire each other ¼ of the game time. Also, there are some 

virtual effects for movement of the spacecrafts. 

3. There will be 10 players and large number of meteors, team bases and planets. The players will 

fire each other ¾ of the game time. Therefore, there will be huge amount of fire lasers in the 

game screen. The collision detection script also runs and on a collision or laser hit there will 

be explosion effects. 

The aim of the scenario one is to see how the game engine renders a basic scene and the quality of 

the game environment. In the second and third scenario we increase the load on the game engine.  

The number of the players in the scenarios may change. However, the edge for the other objects will 

be determined from these scenarios for the final game. 

3.3.1.2 Portico test 

The number of the players is limited to 10 due to the network issues. Since we use Portico RTI 

software for communication between players and AI server, there will be some synchronization 

problems as the player number increases. Therefore, to test whether the synchronization is okay, we 

simply test with different number of players. As in the graphics test we will run the system with 2, 6 

and 10 players with the same data is passing for each case. 

3.3.2 Performance Testing 

We aim to reach at least 24 fps. However, there are some constraints before this goal. In each frame, 

in the unity game engine, the data of the other players is retrieved and set to the corresponding 

player object.  

We are planning to observe performance of the game engine via Lumos1 software. Lumos software is 

a tool that runs within Unity3d to analyze resource use, load and etc.  It also provides statistics and 

error-log files. The results of the scenarios mentioned in the stress testing will be analyzed with 

Lumos tool. However, since we use external Portico software, there is a possibility that Lumos tool 

will not works. In that case, we will have to observe the results by manually. We will try to check and 

match incoming & going data, and with bare eye we will try to catch whether there are any delay or 

lag because delays and lag are the main problems in a multiplayer game. 

                                                           
1
 http://www.uselumos.com/ 



28 
 

3.3.3 Alpha & Beta Testing 

For alpha testing we will pick ten people with various levels of experience with computer 

applications. In order to get clear feedback, a face-to-face satisfaction questionnaire that is prepared 

for the testers will be used. We will ask them to try The Eleron and to give us feedback about mostly 

GUIs. 

Beta testing will be entirely public. We will publish our product at 

http://code.google.com/p/randomsoft along with installation instructions. Users will use the issue 

tracking system provided by Google to submit defects and their opinions. We are expecting to get 

feedback not only on GUIs, but also on easiness of installation and usage of functionalities. 

 


