

CENG 491

SOFTWARE REQUIREMENTS SPECIFICATION

FOR THE ELERON

SAMET CAN - 1678812

EMRE AKSAN – 1678655

ÇAĞLAR GÜNDOĞDU - 1679000

OKAN HARPUT - 1679042

17.01.2013

1

Preface

This document contains the software requirements specification for the “The Eleron”
software. The document is prepared according to the “830-1998 IEEE Recommended
Practice for Software Requirements Specifications. IEEE Computer Society, 1998.”.
This Software Requirements Specification provides a complete description of all the software
requirements and views of the “The Eleron”.

2

Version Date Sections
Changed, Added

Type of Change* Brief Description

1.0 11.11.2012 - A Full document is
written

2.0 17.01.2013 2.6.1
3.1.1.2
2.6.1.2
2.6.1.1
2.6.1.7
2.6.1.9
2.6.1.13
2.6.1.14
2.6.2.2
2.6.2.4
2.6.2.5
3.1.1.1
3.1.1.7
3.1.2.6
3.1.2.7
3.1.3.5
3.1.3.3
3.1.4.2
3.1.4.3
3.1.4.5
2.6.1.7
3.1.2.2
3.2.6

M
M
M
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A

M and D sections
are according to
v1.0

A sections are
according to v2.0

* A: Added, M: Modified, D: Deleted

3

Table of Contents

Preface .. 1

Table of Contents ... 3

1 Introduction .. 6

1.1 Problem Definition .. 6

1.2 Purpose .. 6

1.3 Scope.. 6

1.4 Glossary ... 7

1.5 References ... 7

1.6 Overview .. 7

2 Overall Description ... 7

2.1 Process Model ... 7

2.2 Team Organization .. 8

2.3 Research .. 8

2.3.1 Literature Research and Analysis ... 8

2.3.1.1 RTI ... 8

2.3.1.2 Graphic and Game Engines ... 8

2.3.2 Meeting with ROKETSAN .. 9

2.4 System Overview ... 9

2.4.1 High Level Architecture .. 9

2.4.1.1 Portico Run-Time Infrastructure ... 10

2.4.1.2 Unity3D Game Engine ... 10

2.4.1.3 AI Server .. 10

2.5 Constraints ... 11

2.5.1 Project Schedule ... 11

2.5.2 Interface between External Systems.. 11

2.5.3 Execution Speed for Synchronization .. 11

2.5.4 3D Modeling ... 11

2.6 Product Function ... 12

2.6.1 User Use Cases ... 12

2.6.1.1 Use Case UC01: Environment Determination ... 13

2.6.1.2 Use Case UC02: Agent Number Specification ... 13

4

2.6.1.3 Use Case UC03: Difficulty level selection .. 14

2.6.1.4 Use Case UC04: Button Configuration .. 14

2.6.1.5 Use Case UC05: Spacecraft Selection ... 15

2.6.1.6 Use Case UC06: Control of Movements .. 15

2.6.1.7 Use Case UC07: Rotation about direction axes .. 16

2.6.1.8 Use Case UC08: Fire .. 16

2.6.1.9 Use Case UC09: Zoom In/Out ... 17

2.6.1.10 Use Case UC10: Pause ... 17

2.6.1.11 Use Case UC11: Accelerate ... 18

2.6.2 AI Use Cases ... 19

2.6.2.1 Use Case AI01: Follow the Player .. 19

2.6.2.2 Use Case AI02: Attack Enemy ... 19

3 Requirement Specifications ... 20

3.1 Functional Requirements .. 20

3.1.1 Pre-Game Requirements .. 20

3.1.1.1 Environment Determination ... 20

3.1.1.2 Agent Number Specification ... 21

3.1.1.3 Difficulty level selection .. 22

3.1.1.4 Button Configuration .. 23

3.1.1.5 Spacecraft Selection .. 24

3.1.2 Game Control Requirements.. 25

3.1.2.1 Control of Movements .. 25

3.1.2.2 Rotation about direction axes ... 26

3.1.2.3 Fire to the Target .. 27

3.1.2.4 Zoom In/Out the View .. 28

3.1.2.5 Pause ... 29

3.1.2.6 Accelerate ... 30

3.1.3 In Game Notification Requirement .. 31

3.1.3.1 Player Health Bar .. 31

3.1.3.2 Game logs .. 32

3.1.3.3 Speed ... 33

3.1.3.4 Map Information ... 34

5

3.1.4 AI Requirements ... 35

3.1.4.1 Follow the Player... 35

3.1.4.2 Attack Enemy .. 36

3.2 Non-Functional Requirements .. 37

3.2.1 Usability .. 37

3.2.2 Extensibility .. 37

3.2.3 Reliability .. 37

3.2.4 Performance ... 37

3.2.5 Documentation ... 37

3.2.6 Reusable Connection Component .. 37

4 Conclusion .. 38

6

1 Introduction

1.1 Problem Definition

A lot of humans, animals, vehicles are interacting with each other on a daily basis and these

interactions may vary in a large-scale. Often understanding and estimating the behaviors of

these agents is a hard task. To understand, estimate the interactions of these agents in a

large crowd or even visualization is a common problem due to some reasons such as cost of

real demonstrations, security issues, etc. For these very specific cases where visualization of

the behaviors of agents is important simulation technology helps us.

While imitating the real world and gathering realistic responses are possible, simulating

many agents can be costly and usually ineffective with common simulation techniques. The

need for crowd simulation arises when a scene calls for more characters than can be

practically animated using conventional systems.

1.2 Purpose

This Software Requirements Specification document supplies a comprehensive description

of all the functions and specifications High Level Architecture of Crowd Simulation under the

collaboration with ROKETSAN and CEng 490 course. This document will be used as a

guideline in the development state of the project. Since this document is a first release,

there may be some modifications to adapt changes of requirements and specifications in the

system.

The target audience of this document includes all users who are interested in simulation
applications and games and prospective software developers associated with the project.

1.3 Scope

The software to be produced is “The Eleron”. This software will be a show case for the

software that enables communication between different simulation technologies. The game

will include crowd simulation, artificial intelligence and multi-player concept.

In this game, spacecraft, planets and meteors will be supported in 3D. In the game, two or

more players will fight against each other as two teams. These teams also include AI

controlled units. In pre-game, the player who created the game is expected to specify some

predefined rules. These rules refer environment of the game, number of AI agents, difficulty

of the game and spacecraft types.

In this version of the document, due to the changes in show case, some requirements and

use cases are no longer valid. Therefore, they are extracted.

7

1.4 Glossary

The following is a list of terms, acronyms and abbreviations.

Term Abbreviation

RTI Run-time Infrastructure

HLA High Level Architecture

AI Artificial Intelligence

IEEE The Institute of Electrical and Electronics
Engineers

FOM Federation Object Model

Term Definitions

AI-Agent Units in the game controlled by AI server

Bot Units in the game controlled by AI server

Federate An HLA compliant simulation entity

Federation Collection of federates connected via the RTI

1.5 References

IEEE Std 830-1998 IEEE Recommended Practice for Software Requirements Specifications.
IEEE Computer Society, 1998.

1.6 Overview

This document contains two main additional chapters. The first, The Overall Description,
describes the process model, pre-research phase, main structure of the system, the interface
between main modules and use cases. The next chapter basically includes all requirement
specifications about the project, inspected in different components of the project.

2 Overall Description

2.1 Process Model

One of the most important parts of the software engineering is deciding the process model

of the project that will be developed, because the process model has significant effects on

the overall project. In the Ceng491 course, all the development steps are specified with

their deadlines, so it has sequential structure. For this reason, the waterfall model may seem

most appropriate model at the first instance. However, there will be minor changes

throughout the process, but they will continuously occur. So, using spiral model, which

combines incremental development and the waterfall model, can be thought as more

convenient model. Requirements or wishes of customer may change during the

development process as project team gather with customer, therefore the minor changes

becomes inevitable. Also, specifications of the project are not concluded with the exact

decision, so it is clear that there will be changes and improvements. All these reasons lead to

apply spiral model. Obviously, backtracking earlier stages and making alterations is

8

impracticable, but these changes are necessary. Some releases and documents will be

formed in time as in incremental model, however spiral model provides that features of

product will overlap with requirements.

2.2 Team Organization

Team structure of the software team has also significance on the project development as in

process model. There is no hierarchy in the team so all decisions can be taken collectively.

Since there is no hierarchy, all team members are at the same level, so horizontal

communication method is used. Role of each team member decided randomly in most of the

time and it is exchangeable if there is demand for that.

2.3 Research

2.3.1 Literature Research and Analysis

To be able to choose suitable tools that will be used in the project, detailed research made

on the Internet.

2.3.1.1 RTI

In this project HLA architecture will be used. It enables communication of several systems

with each other. The main operation made on run-time infrastructure which is underlying

technology of HLA architecture. We have searched several RTI software on the internet.

First one was MAK High Performance RTI and it has detailed documentation including

information about how to make communication with UDK. At first instance, it seems nice

chose, but MAK High Performance RTI is commercial program, therefore we start to search

non-commercial RTI software such as CERTI and Portico. They were both seem like suitable

choices, but by considering majority of example applications and available documentation

about the software, we decided to use Portico as RTI in this project.

2.3.1.2 Graphic and Game Engines

Unity: Unity is the advised game engine for the beginners. It has huge community, so the

opportunity for taking support is easier, also it can work on almost all operating system. It is

possible to import Google Earth terrains into unity3d. In our search we could not discover

any project that connects unity and HLA.

UDK : UDK is freeware game engine and it is easiest game engine in the issues of finding
support after unit3d. It uses Javascript and unreal script. It has unreal Kismet software
which makes possible to design level of game without even changing one line in the code. In
the video quality, UDK is better than other open source game engines.

Irrlicht: Irrlicht, written in C++, is open source graphic rendering engine. It can work on
almost every platform which is basically Windows, MacOS, Linux, iPhone, XBOX, Symbian OS,
etc. It uses zlib license in which one can make any changes in the source code and use that
new code for commercial purposes without informing or reporting these changes to Irrlicht
developers. It supports much more rendering API than other 3D graphic engines (DirectX 8,
DirectX9, OpenGL, etc.). The documentation and community of Irrlicht engine is excellent.
There are lots of tutorials and examples in their website and those examples start with

9

HelloWorld to advanced examples. But, Irrlicht is not a game engine and for that reason in
needs external libraries like sound and physic engines.

2.3.2 Meeting with ROKETSAN

The scenario decision made after meeting with ROKETSAN according to their desires. Also

the tools to be used evaluated at the meeting and their pros and cons specified, and as a

result tools will be used are decided.

2.4 System Overview

2.4.1 High Level Architecture

A high-level architecture (HLA) is a general purpose architecture for distributed computer

simulation systems. Using HLA, computer simulations can interact (that is, to communicate

data, and to synchronize actions) with other computer simulations regardless of the

computing platforms. The interaction between simulations is managed by a Run-Time

Infrastructure (RTI).

Figure 1: HLA-RTI Overview

Our system is basically constructed on a HLA-RTI middleware which is required to implement

HLA. Over the RTI, game engines and AI engine will be able to communicate. Each game

engine and the AI engine corresponds to a federate. According to requests from game

engines, new state is calculated by AI server and sent back to the game engines.

10

Figure 2: System Overview

2.4.1.1 Portico Run-Time Infrastructure

Among other alternatives such as MAK, Certi, etc. Portico is decided to use as RTI engine.

Portico is an open source RTI software and supports implementation in Java language. It has

also a large community and good documentation. Portico uses IEEE 1516 interface.

2.4.1.2 Unity3D Game Engine

Unity3D provides environment for modelling, graphics rendering, animation, sound and

physics engine. There are at least two game engines for different players. Each player

controls a group of planes from their camera viewpoint. For each player each game engine

continuously interacts with RTI to update simulation state. For each action/event request

such as change direction, fire, etc. the request and state of the simulation in game engines is

informed to AI server over RTI. The response is new state and it is sent to game engines to

simulate the scene.

2.4.1.3 AI Server

In the game, there are AI controlled planes that follows instructions of the players. The bots’

responses to the events/actions are determined by the AI server. With the parameters sent

from game engines, for each AI agent, possible moves are generated and sent back to the

game engines. The bots’ interactions can be defined by the players, which affect response of

the AI server.

11

2.5 Constraints

2.5.1 Project Schedule

Since this is a course project, the project has to follow certain deadlines. During the limited

time, basic knowledge about HLA architecture, RTI dynamics, Unity3D game engine, 3D

modeling and realizing AI agents must be gained. The project documents like SRS, SDD or

STD must strictly obey the deadlines. Mean time, the implementation of the project and

after the implementation, the testing phase should be handled. The project must be

delivered at the end of second semester, June 2012.

2.5.2 Interface between External Systems

Since the project is originally a simulation link project that gathers different external

systems, a generalized bridge between the external systems must be implemented. HLA-RTI

providing an interface between different systems should be generalized that will be able to

run with different federations (FOM objects) of same external systems.

2.5.3 Execution Speed for Synchronization

The system gathers number of different systems and there must be synchronization

between them. There will be at least two players and their states will be updated real-

timely. The server must get state and event information from different game engines and

calculates new states of the players and the AI server must also update AI-based agents’

status in the mean time. The server should bear up against all these challenging interactions.

2.5.4 3D Modeling

Modeling of the all objects is a tedious work. Due to time limit and lack of experience to

create 3D models, ready-to-use models may be used for some objects.

12

2.6 Product Function

2.6.1 User Use Cases

13

2.6.1.1 Use Case UC01: Environment Determination

Brief Description The User adjusts the simulation environment.

Initial Step-By-Step
Description

Before this use case can be initiated, the User has already opened
environment selection screen.

1. Possible space environment selection options shown on the
screen, user can select one of them just by one click.

Xref Section 3.1.1.2, Environment Determination

2.6.1.2 Use Case UC02: Agent Number Specification

Brief Description The User specifies number of agents.

Initial Step-By-Step
Description

Before this use case can be initiated, the User has already opened
agent number specification screen.

1. The user enters the desired number of agents from the
keyboard.

2. In the simulation, there would be exactly specified number of
agents.

Xref Section 3.1.1.3, Agent Number Specification

14

2.6.1.3 Use Case UC03: Difficulty level selection

Brief Description The User selects the difficulty level.

Initial Step-By-Step
Description

Before this use case can be initiated, the User has already opened
difficulty level selection screen.

1. The user selects one of the difficulty level which are low,
medium and high

2. The game difficulty is set according to the user choice.

Xref Section 3.1.1.4, Difficulty level selection

2.6.1.4 Use Case UC04: Button Configuration

Brief Description The User configures the buttons.

Initial Step-By-Step
Description

Before this use case can be initiated, the User has already opened
button configuration screen.

1. The user selects the functionality which one keyboard button
will be assigned.

2. The user press one of the buttons on the keyboard to specify
the button for functionality selected at step 1.

Xref Section 3.1.1.5, Button Configuration

15

2.6.1.5 Use Case UC05: Spacecraft Selection

Brief Description The User selects aircraft type or model.

Initial Step-By-Step
Description

Before this use case can be initiated, the User has already opened
aircraft selection screen.

1. The user selects the spacecraft type or model according to his
/ her desires with just one mouse click

Xref Section 3.1.1.6, Spacecraft Selection

2.6.1.6 Use Case UC06: Control of Movements

Brief Description The User directs the selected character direction.

Initial Step-By-Step
Description

Before this use case can be initiated, the User has already started the
game(simulation)

1. During the simulation, the User presses the “w”,”a”,”s” and
”d” buttons of keyboard.

2. Depending on pressed button, the selected character’s
direction change accordingly.

Xref Section 3.1.2.1,Control of Movements

16

2.6.1.7 Use Case UC07: Rotation about direction axes

Brief Description The User directs the selected character rotation.

Initial Step-By-Step
Description

Before this use case can be initiated, the User has already started the
game(simulation)

1. During the simulation, the User presses the “q” and “e”
buttons of keyboard.

2. Depending on pressed button, the selected character’s
rotation change according to direction axes.

Xref Section 3.1.2.2,Rotation about direction axes

2.6.1.8 Use Case UC08: Fire

Brief Description The User fires to the targets.

Initial Step-By-Step
Description

Before this use case can be initiated, the User has already started the
game(simulation)

1. During the simulation, the User moves mouse.

2. The user takes aim at targets.

3. Then he/she clicks one of the mouse buttons.

4. Depending on clicked button, the selected character uses
primary or secondary weapon and fires.

Xref Section 3.1.2.3,Fire

17

2.6.1.9 Use Case UC09: Zoom In/Out

Brief Description The User zooms in/out the view.

Initial Step-By-Step
Description

Before this use case can be initiated, the User has already started the
game(simulation)

1. During the simulation, the User rolls mousewheel.

2. Depending on which dimension of mousewheel is rolled, the
view is zoomed in/out.

Xref Section 3.1.2.4,Zoom In/Out

2.6.1.10 Use Case UC10: Pause

Brief Description The User pauses game(simulation).

Initial Step-By-Step
Description

Before this use case can be initiated, the User has already started the
game(simulation)

1. During the simulation, the User presses “Esc” button of
keyboard.

2. The game is paused.

Xref Section 3.1.2.5,Pause

18

2.6.1.11 Use Case UC11: Accelerate

Brief Description The User accelerates the speed of selected character.

Initial Step-By-Step
Description

Before this use case can be initiated, the User has already started the
game(simulation)

1. During the simulation, the User keeps press “space” button of
keyboard.

2. The speed increases unless it is equal to the max speed.

Xref Section 3.1.2.8,Accelerate

19

2.6.2 AI Use Cases

2.6.2.1 Use Case AI01: Follow the Player

Brief Description The bots will be able to move according to the player.

Initial Step-By-Step
Description

If the AI-agent is not taken any command rather than following to
player:

3. If the player changes its velocity, direction or altitude, the AI
server is informed with these changes.

4. The AI server computes new state for bots according to
player parameters and pays attention to keep formation,
distance between units same.

5. The AL agent follows the user.

Xref Section 3.1.4.1,Follow the Player

2.6.2.2 Use Case AI02: Attack Enemy

Brief Description The bots will be able to attack to the enemy if an enemy unit is in
range.

Initial Step-By-Step
Description

1. The AI controlled unit encounters with an enemy unit.

2. The AI controlled unit fires to the enemy unit if the enemy is
in attack range.

Xref Section 3.1.4.4,Attack enemy

20

3 Requirement Specifications
There are basically two types of requirements namely functional and non-functional. Each

requirement has a priority value.

 Essential: Implies that the software will not be acceptable unless these requirements

are provided in an agreed manner.

 Conditional: Implies that these are requirements that would enhance the software

product, but would not make it unacceptable if they are absent. Only if enough time

and sources are available, these requirements are fulfilled.

3.1 Functional Requirements

3.1.1 Pre-Game Requirements

3.1.1.1 Environment Determination

Description of the
requirement

The system shall provide the User with the functionality that the
User can make selections for the space environment

Priority Conditional

Inputs Mouse click

Source Mouse input

Outputs Desired environmental conditions are selected.

Pre-condition The user already opened the environment screen.

Action The user made decision for space environment just by clicking the
desired selection.

Xref UC02

21

3.1.1.2 Agent Number Specification

Description of the
requirement

The system shall provide the User with the functionality that the
User can specify the number of agents.

Priority Conditional

Inputs Keyboard press

Source Keyboard input

Outputs Number of agents is specified.

Pre-condition The user already opened agent number selection screen.

Action The user presses one of the number buttons on the keyboard and set
the agent number to the given number.

Xref UC03

22

3.1.1.3 Difficulty level selection

Description of the
requirement

The system shall provide the User with the functionality that the
User can select the difficulty level.

Priority Conditional

Inputs Mouse click

Source Keyboard input

Outputs Look for alternative difficulty levels and select one of them.

Pre-condition The User clicked

Action There are three difficulty levels which are low, medium and high.
User can select one of them just by clicking.

Xref UC04

23

3.1.1.4 Button Configuration

Description of the
requirement

The system shall provide the User with the functionality that the
User can assign any functionality of the game to any button. The
formations can only be assigned to 1, 2 or 3 button on the keyboard.

Priority Conditional

Inputs Keyboard press

Source Keyboard input

Outputs According to the user choices, buttons for movement, buttons for
guns, buttons for formation and other game functionalities assigned
to some buttons.

Pre-condition The User press one of the keyboard buttons.

Action Flight formation of aircrafts can be only attained to 1, 2 or 3 buttons.

Movement, camera, gun and other functionalities can be assigned to
remaining buttons. Firstly user selects the functionality, and then
presses the button he/she prefers.

Xref UC05

24

3.1.1.5 Spacecraft Selection

Description of the
requirement

The system shall provide the User with the functionality that the
User can choose the aircrafts wished to be used.

Priority Conditional

Inputs Mouse click

Source Mouse input

Outputs According to the user choices, aircrafts in the simulation are
selected.

Pre-condition The User press one of the keyboard buttons.

Action In the spacecraft selection screen, there are several spacecraft types
and models, user can select one of them to be able to use in
simulation or select them just for agents. The selection procedure
made with mouse click.

Xref UC06

25

3.1.2 Game Control Requirements

3.1.2.1 Control of Movements

Description of the
requirement

The system shall provide the User with the functionality that the
User can direct the selected character dynamically.

Priority Essential

Inputs Keyboard press

Source Keyboard input

Outputs Changing the directions and positions of the selected character

Pre-condition The User press “w”, “a”, ”s” and ”d” buttons of keyboard.

Action When the User pressed on one of these buttons, the
KeyboardListener receives the keyboard event.

 If “w” button is pressed, character changes its direction to up.

 If “s” button is pressed, character changes its direction to
down.

 If “d” button is pressed, character changes its direction to
right.

 If “a” button is pressed, character changes its direction to
left.

Xref UC08

26

3.1.2.2 Rotation about direction axes

Description of the
requirement

The system shall provide the User with the functionality that the
User can direct the selected character rotation dynamically.

Priority Essential

Inputs Keyboard press

Source Keyboard input

Outputs Changing the directions and positions of the selected character

Pre-condition The User press “q” and ”e buttons of keyboard.

Action When the User pressed on one of these buttons, the
KeyboardListener receives the keyboard event.

 If “q” button is pressed, character changes its rotation to left.

 If “e” button is pressed, character changes its rotation to
right.

Xref UC09

27

3.1.2.3 Fire to the Target

Description of the
requirement

The system shall provide the User with the functionality that the
User can fire to the targets.

Priority Essential

Inputs Mouse click

Source Mouse input

Outputs The selected character fires to the targets.

Pre-condition The User clicks the mouse.

Action When the User clicked mouse, the MouseListener receives the
mouse event. The selected character fires to the target which had
been taken aim before. The selection of weapons which will be used
for firing depends on which mouse button is clicked.

 If left mouse button is clicked, primary weapon is fired.

 If right mouse button is clicked, secondary weapon is fired.

Xref UC10

28

3.1.2.4 Zoom In/Out the View

Description of the
requirement

The system shall provide the User with the functionality that the
User can zoom in/out the view.

Priority Essential

Inputs Mouse wheel roll

Source Mouse input

Outputs The view of game is zoomed in/out.

Pre-condition The User rolls the mouse wheel.

Action When the User rolled mouse wheel, the MouseListener receives the
mouse event. Depending on the rolls direction, the view of game is
zoomed in or out.

 If wheel is rolled in forward direction, the view is zoomed in.

 If wheel is rolled in backward direction, the view is zoomed
out.

Xref UC11

29

3.1.2.5 Pause

Description of the
requirement

The system shall provide the User with the functionality that the
User can pause the game at any time.

Priority Essential

Inputs Keyboard press

Source Keyboard input

Outputs The game stops and selection menu is shown.

Pre-condition The User press “ESC” button of keyboard.

Action When the User pressed this button, the KeyboardListener receives
the keyboard event. The game is stop until the “ESC” button is
pressed again.

Xref UC12

30

3.1.2.6 Accelerate

Description of the
requirement

The system shall provide the User with the functionality that the
User can accelerate the selected character.

Priority Essential

Inputs Keyboard press

Source Keyboard input

Outputs The speed of selected character increases.

Pre-condition The User press “space” button of keyboard.

Action When the User pressed this button, the KeyboardListener receives
the keyboard event. The character has the default speed.

When “space” button is not pressed;

 If the current speed of character is equal to the default
speed, the speed does not change.

 If the current speed of character is greater than the
default speed, the speed decreases up to the default
speed.

When the User keeps pressing “space” button;

 If the current speed of character is equal to the max
speed, the speed does not change.

 If the current speed of character is smaller than the max
speed, the speed increases up to the max speed.

PS: default and max speed is specified later.

Xref UC15

31

3.1.3 In Game Notification Requirement

3.1.3.1 Player Health Bar

Description of the
requirement

The system shall provide the user with the functionality that the User
can see remaining health value of the planes his and his opponents
according to damage they takes.

Priority Essential

Inputs Damage taken by aircraft

Source Current state information coming from server

Outputs Displaying current health values of aircraft

Pre-condition Starting game

Action When the User starts game all aircrafts have full health bar. After
combat starts when an aircraft is hit or crashes, its health value is
decreased according to amount of damage it takes.

Xref None

32

3.1.3.2 Game logs

Description of the
requirement

The system shall provide the user with the functionality that the User
can see the destroyed aircraft and the name of the destroyer of that
aircraft and the location where it happens.

Priority Essential

Inputs Destruction of an aircraft

Source Information coming from server

Outputs Displaying name of the destroyed aircraft and its destroyer

Pre-condition Destroying an aircraft in combat

Action When an aircraft is destroyed in combat the names of the destroyed
player and destroyer player and the coordinates of battle will be
displayed in game screen.

Xref None

33

3.1.3.3 Speed

Description of the
requirement

The system shall provide the User with the functionality that he/she
can see current speed of his/her plane.

Priority Essential

Inputs Player movements

Source Current state information coming from server

Outputs Displaying current speed value of plane

Pre-condition Starting game

Action When the User starts game all planes have 0 speeds. After takeoff
speed increases. When user slows the plane speed decreases. These
changes calculated according to environment conditions, the
pressing duration of movement buttons and the damage that plane
takes until that moment.

Xref None

34

3.1.3.4 Map Information

Description of the
requirement

The system shall provide the User with the functionality that he/she
can see current locations of all spacecrafts in the game.

Priority Essential

Inputs Coordinates of all spacecrafts and space

Source Coordinates information coming from server

Outputs Displaying all spacecrafts and battles on map

Pre-condition Starting game

Action When the User starts game the in left corner of GUI map will be
opened automatically. In this map teammates, opponents and
battles will be shown according to these specifications:

1. Team mates will be represented by green arrow.

2. Opponents will be represented by red cross.

3. When a battle begins exclamation point of battle location.

4. Skull for a destroyed plane coordinates.

Xref None

35

3.1.4 AI Requirements

AI bots will basically have two properties. They have to follow the human player in their

team. They have to response to the movements of the player and avoid any collision with

other units during any maneuver. When the player interacts with enemies, with their team

leader, the ai agents will attack or retreat.

3.1.4.1 Follow the Player

Description of the
requirement

The AI controlled agents, in the game, shall follow the player
otherwise the player gives different orders.

Priority Essential

Inputs Player instructions, tactics

Source Current state information coming from server

Outputs Bots make their move according to the real player in their team.

Pre-condition The User does not provide any order that makes the bots move in
different manner.

Action When the user changes its direction, velocity or altitude, apply these
changes to bots’ flight parameters. During movement, current
formation, distance between planes shall be kept same.

Xref AI01

36

3.1.4.2 Attack Enemy

Description of the
requirement

When the enemy is in attack range, the AI units shall fire to the
enemy.

Priority Essential

Inputs None

Source Current state information coming from server

Outputs Bots attack to the enemy.

Pre-condition An enemy unit must be in attack range.

Action During simulation, when an AI-agent encounters with an enemy unit,
it should attack to the enemy. If the enemy gets out of range,
according to the strategy (i.e. defensive, aggressive), it will keep
chasing to get in range again or keep it’s moving.

Xref AI03

37

3.2 Non-Functional Requirements

3.2.1 Usability

This project is a warfare game; users will be inexperienced when they start to play. Users will

be interact with simulation after it is started and with the help of user friendly GUI and

changeable control settings they will adapt the environment easily. To help users to adapt

game environment all graphic models shall be as clear as possible.

3.2.2 Extensibility

The Eleron shall be open to changes that necessary additions will be able to add and

unnecessary parts will be removed. These changes will be applied to make game play more

playable and less complicated.

3.2.3 Reliability

The Eleron shall be played without any problems or bugs. All components will work

synchronously that will not cause any performance issues. The reactions of bots shall always

be consistent.

3.2.4 Performance

All implementations will be efficient. It’s RTI, game engine and audio engine implementation

will have high performance that will not cause any performance concerns. Two users shall

play without any performance concerns.

3.2.5 Documentation

For project users, manual will be provided. In this manual the information about installation,

configuration and running game stages will be given to the users. Moreover, for beginners at

game start some tooltips will be available to show basic movements.

3.2.6 Reusable Connection Component

The communication component between different technologies shall be generic. It should

be easily reusable in other projects. To enable this, an API may be implemented. By

providing basic send and receive methods the data transfer shall be handled.

38

4 Conclusion
In this report, software team’s perspective to online team collaboration platform game.

Game scenario is specified with some details. Interaction between the user and system is

defined. Scheduling timeline and task sharing between software team is arranged. After

some research, technologies to be used understood by the team and team members realized

their capabilities too with the help of this document.

