

Software Design Description for Web

Based Integrated Development
Environment

DEVCLOUD Web Based Integrated

Development Environment

TinTin

Alican Güçlükol
Anıl Paçacı
Meriç Taze

Serbay Arslanhan

1

UPDATES ... 3

1. INTRODUCTION .. 4

1.1 Purpose ... 4

1.2 Scope .. 4

2. REFERENCES ... 6

3. DECOMPOSITION DESCRIPTION ... 7

3.1 Module Decomposition .. 8

3.1.1 ExternalInterface Module Description .. 9

3.1.2 User Module Description .. 10

3.1.3 User Manager Module Description ... 11

3.1.4 Execution Manager Module Description .. 12

3.1.5 File Module Description .. 13

3.1.6 Theme Module Description ... 14

3.1.7 Code Editor Module Description ... 15

3.1.8 Command Module Description ... 16

3.1.9 Command Line Manager Module Description .. 17

3.2 TRACEABILITY MATRIX ... 18

4. DEPENDENCY DESCRIPTION ... 19

4.1 Inter-module Dependencies ... 19

4.1.1 ExternalInterface Module Dependency .. 20

4.1.2 User Module Dependency ... 20

4.1.3 User Manager Dependency ... 20

4.1.4 Execution Manager Dependency .. 20

4.1.5 File Module Dependency .. 20

4.1.6 Theme Module Dependency ... 21

4.1.7 Code Editor Module Dependency ... 21

4.1.8 Command Module Dependency ... 21

4.1.9 Command Line Manager Module Dependency .. 21

5. INTERFACE DESCRIPTION ... 22

5.1 Module Interfaces .. 22

5.1.1 ExternalInterface Module Interface Description .. 22

5.1.2 User Module Interface Description ... 23

2

5.1.3 User Manager Module Interface Description ... 25

5.1.4 Execution Manager Module Interface Description ... 26

5.1.5 File Module Interface Description ... 27

5.1.6 Theme Module Interface Description ... 29

5.1.7 Code Editor Module Interface Description ... 30

5.1.8 Command Module Interface Description .. 32

5.1.9 Command Line Manager Module Interface Description .. 33

6. DETAILED DESIGN ... 34

6.1 Module Detailed Design ... 34

6.1.1 ExternalInterface Module Detailed Design ... 34

6.1.2 User Module Detailed Design ... 35

6.1.3 User Manager Module Detailed Design .. 35

6.1.4 Execution Manager Module Detailed Design.. 36

6.1.5 File Module Detailed Design ... 36

6.1.6 Theme Module Detailed Design .. 37

6.1.7 Code Editor Module Detailed Design .. 37

6.1.8 Command Module Detailed Design .. 38

6.1.9 Command Line Manager Module Detailed Design ... 38

3

UPDATES

Section Name Section Number Status
Module Decomposition 3.1 changed

ExternalInterface Module Description 3.1.1 changed

ExternalInterface Interface Description 5.1.1 changed

ExternalInterface Detailed Design 6.1.1 changed

UserManager Module Description 3.1.3 changed

UserManager Interface Description 5.1.3 changed

UserManager Detailed Design 6.1.3 changed

FileModule Module Description 3.1.5 changed

FileModule Interface Description 5.1.5 changed

FileModule Detailed Design 6.1.5 changed

CommandLineManager Module Description 3.1.9 changed

CommandLineManager Interface Description 5.1.9 changed

CommandLineManager Detailed Design 6.1.9 changed

4

1. INTRODUCTION

 This document describes the design for the web based integrated development

environment. To be able to modularize the software in proper way, first we will decompose

project into modules which are different than the others in terms of structure and

functionality. Purpose of this decomposition is as follows, when software decomposed into

separate modules, than it is easier to implement these modules separately and test them.

Also any possible change on one of the modules will have a minimal effect on the other

modules. So decomposition is obviously a necessary and beneficiary part of software design.

After giving decomposition of the system, we will describe the dependencies of among these

separate modules. In most cases, there would be dependency between modules even if they

have been separated in a best possible way. These dependencies will be in form of the

relationship between different modules. After dependency section, interface description

follows. These interface descriptions will be enough for a user to use that module. Hence,

these 3 chapters will describe the modules without going into too much detail from different

perspectives. Later, as the last part of these document, detailed description about design of

modules will be given. In this section, each component and its internal details will be

described in detail

 1.1 Purpose

 Main purpose of this software design description document is to encompass a design

model with architectural, interface, component level and deployment representations.

Design model will be contained in this software design description document, which later

will be used as a medium for communicating software design information, assessed for

quality, improved before code is generated. Many graphical representations such as class

diagrams and verbal explanations were added to this document to achieve the goal of

producing the web based integrated development environment in the context of design

model.

 1.2 Scope

 In this document, we will specify architecture and detailed design for the web based

integrated development environment. We will give identification, type, purpose, function,

subordinates, dependencies, interface, resources, processing and data attributes of each

5

component. We will not, however, give a prototype, which can easily be constructed

following the implementation details specified in detailed design part of this document.

6

2. REFERENCES

 IEEE standard 10161998 recommended practice for software design descriptions.

 Freeman, P. and A. I. Wasserman , Tutorial on Software Design Techniques. 4th

Edition, IEEE Computer Society Press.

 Gamma,E.,etal ., Design Patterns, AddisonWeslet, 1995.

 UML: The Unified Modeling Language User Guide by G.Brooch, J. Rumbaugh and

I.Jacobson, AddionWeslay Pub Co; ISBN:0201571684.

 Roger S. Pressman , Software engineering : a practitioner's approach. 6th edition,

McGrawHill international edition.

 Doğru,A.,Component oriented software engineering , The Atlas

Publishing,2006.

7

3. DECOMPOSITION DESCRIPTION

 In this section of the document, we will describe the design entities that composes

the whole web based integrated development environment. System is not a one big

component which does all functionality itself; instead mainly system decomposes of two

main components which are namely Server Component and Interface Component. These

components also decomposed into smaller modules according to their structure and

functionality.

 As the name suggests, Server Component is the part responsible from holding all the

user and system data and doing the business logic. There will be one huge server for the

system which will hold all the data about the web based integrated development

environment. Also, with the help of modules it included, server component will be

responsible from doing all the business logic, like user management, compiling and running

project etc.

 Second main component of the system is the Interface Component as mentioned

above. Interface component mainly will be responsible from interaction of user with the

Server Component. Its main functionality is the serving the Web front end of the system.

Other functionalities of these components will be providing the command line interface and

GitHub synchronization interface. However, since these last two functionalities will be

served over the Web Front end of the system, Web Front end is the main module of this

Interface component. Component will be basically providing a web page will be the graphical

user interface of the system. Also it will be the single entry point for all users. Before looking

at the each module separately, let’s have a look at the following Package Diagram;

8

 As we have stated before, you can see in above diagram that each main component

is composed of other modules. Now we are going to describe each of these modules

separately. For each, we will give identification, purpose, function and the subordinates

design attributes.

 3.1 Module Decomposition

 In this section of the document, decomposition and the identification of components

into modules can be found. Important point is that web based integrated development

environment is not constructed of single module. System is composed of different modules,

which are separated than each other by means of structure and functionality. Here, we will

keep the design of modules simple so that it can be easily implemented and can serve full

functionality of the module. For the each module that will be described name and

identification will be given. Identification will not be same for the distinct modules. Later

purpose of the module will be given. In the purpose, need for this module will be described.

Then function of each module, what module does, will be described. Then subordinated of

the modules will be given which are other modules that makes up the system. We will also

present class diagram for the entities for the readers to have a better understanding.

 Server Component of the web based integrated development environment will be

the component where all business logic is done and all the information is kept. First of all,

server component will act as a database for the web based integrated development

environment system. All the user data such as projects and files of the user, preferences of

user setting and all the system data such as the users itself will be kept on the server. Users

are able to access only to their own data according to their user privileges. Server will also be

responsible from the implementing all the features. Every operation such as compiling a

project or running a task will be done on the server and only the effects of operations will be

reflected to user. In this manner, Interface Component will only be a connection between

the system itself and the user through the web page provided.

 What interface component basically does can easily be understood by the preceding

paragraphs. Main module of the Interface component will be the web front end which will

be the graphical user interface of the system. Communication between server and the client

will be done by using the http request, RESTful API. Other two modules of the Interface

components will be provided over the web page, so they will actually be a part of web page

interface according to their structure.

9

-State diagram shows available operations on a project-

3.1.1 ExternalInterface Module Description

Background:

 External interface will be entry point of the web based integrated development

environment for the users. Users will login, logout do the all operations through the external

interface and operations will be done on the server.

 External interface composes of three parts, namely web front end, GitHub

synchronization and command line interface. These parts are not going to implement any

business logic, they only will provide and API for users to perform their related operations on

the Server component. Main component of the external interface will the web front end.

 Web front will basically be a web page which will be the single entry point for the

users. Users will login through the web page and create projects, edit projects, run and

compile their source code and etc. Web page will not be a static web page, it will be a

dynamic web page fully implemented in JavaScript. JavaScript application on the web page

will perform operations on the server through the RESTful API.

10

 One important functionality served by this module is directory listing. It is mainly

intended to be used by the workspace explorer. It is a REST Service gets the name path or

name of a directory and return its content in the form of HTML list.

Description:

Identification ExternalInterface

Purpose The purpose is the provide user interaction with Server Component

Function This component provides an interface through a web page for user to perform
operations on the server. It will only be a bridge between user and the server and is
will only be responsible from performing operations on the server. It will not
implement any business logic.

Diagram:

3.1.2 User Module Description

Background:

 This module will provide functionality need by User. It contains basic user

information, credentials, and basic functionalities to interact with the environment. Since

user is the main actor of the system, all modules must be available to him. By using

getter/setter of environment variables, he can interact with system at will.

Description:

Identification User

Purpose The aim of this module is to provide functionalities to the user if required.

Function Both to set attributes of user in registration or update process and to get
attributes of user in a request or preparing workspace to user with his
preferences, getter and setter methods are defined for all user attributes.

11

Diagram:

3.1.3 User Manager Module Description

Background:

 This module provides functionalities to the user to register, login to the system, and

update his information.

 This module also provides RESTful services for login, register and update operations.

Description:

Identification User Manager

Purpose The purpose of this module is to manage user authentication.

Function In order to use system, a user must register to the system. After, he must login in
to the system, and he could change his information if want. All these
functionalities are provided by user manager module.

12

Diagram:

3.1.4 Execution Manager Module Description

Background:

This module will provide all functionality to build, debug and run a project or a single

file. This module will be available to all users. Users will be able to make all kind of execution

processes using this module.

Description:

Identification Execution Manager
Purpose The aim of this module is managing all execution process by providing required

functionality for building, debugging and running.
Function This module will implement compile methods for both a file and a project. It will

also implement debug, run, setBreakpoints, getBreakpoints, stepInto, stepOver,
stepOut, addExpression, removeExpression and evaluateExpressions methods.
Most of the functions’ names are self-explanatory. Expression is anything to be
evaluated in each step of debugging. stepInto, stepOver and StepOut methods
will be used in debug mode. If the current statement is a function call, then
stepInto steps into that function , otherwise it stops at the next statement.
stepOver executes the whole function or script, and it stops at the next statement

after the function call. stepOut steps out of the current function and up one level.

13

 Diagram:

3.1.5 File Module Description

Background:

 This module models the files edited and displayed in the editor. It consists of four

attributes representing file name, file content, file type, and file path.

 Also there will be Ajax RESTFul servies for clients to handle file operations.

Description:

Identification File

Purpose The purpose is to model the files open in the code editor.

Function This model is used to identify the files in the code editor by using the private
attributes in the model. It can represent the opened files by the user in the browser.

14

Diagram:

3.1.6 Theme Module Description

Background:

 This module models the themes used in the code editor. It consists of five attributes

representing theme name, keyword color pairs that maps keywords to the color codes they

are going to be shown, background color, text font family, and text color.

Description:

Identification Theme

Purpose The purpose is to model the themes available for the code editor.

Function This model is used to identify the themes available in the code editor by using the
private attributes in the model.

15

Diagram:

3.1.7 Code Editor Module Description

Background:

 Code editor module is the graphical user interface that covers the following product

functions by using the interfaces of the other system modules and the methods in it as

described in the system requirement specification:

 Syntax highlighting

 Auto-indentation

 Bracket/Brace matching

 Auto-completion

 Setting/Displaying breakpoints

 Find/Replace with regular expression support

 Editor themes

 Displaying line numbers

It consists of three fields representing opened files, themes and current theme in the code

editor.

16

Descripton:

Identification Editor

Purpose The purpose is to model the code editor itself.

Function This model is used to identify the code editor. It uses File and Theme models to
represent opened files, available themes, and the current theme for the code editor.
It also consists of several public methods to achieve the requirements mentioned
above.

Diagram:

3.1.8 Command Module Description

Background:

This module will be used to model a command as its name suggests. It contains

name, arguments and options information for a valid command. This module will be used

keep all information about a command in an organized way.

17

Description:

Identification Command
Purpose The aim of this module is to keep all information about a command in an

organized way
Function This module will implement only setter-getter methods for its attributes

commandName, arguments and and availableOptions.

Diagram:

3.1.9 Command Line Manager Module Description

Background:

This module will provide users to required functionality to use command line

interface. It contains basic functionalities which are provided by standard Unix-like

command line. This module will be available to all users. Users will be able to made basic

command line jobs using this module.

This module also provides WebSocket Interface to facilitate bidirectional data

exchange between the web browser and the server.

Description:

Identification Command Line
Purpose The aim of this module is to provide required functionalities to use command line

interface.
Function This module will implement enterCommand, nextCommand, previousCommand

and getAvailableCommands methods. enterCommand will get command entered
by user and execute it on current workspace. previousCommand and
nextCommand are return respectively previous and next commands of current
selected command in command stack and getAvailableMethods gets string and
returns commands contains this string.

18

Diagram:

3.2 TRACEABILITY MATRIX

 In this section, cross reference of software requirements specification and software

design description modules will be given. As it has been stated before, aim of to this design

is to keep design as much as possible so that implementation, testing and maintaining would

require minimal effort. Also system should provide user all the functionality. Purpose of the

below table is to match requirements and modules so that one can trace which requirement

is implemented by the modules in web based integrated development environment system.

SRS REQUIREMENTS SDD MODULES

3.1.1 3.1.1

3.1.2 3.1.1

3.1.3 3.1.1

3.2.1 3.1.2, 3.1.3

3.2.2 3.1.5, 3.1.6, 3.1.7

3.2.3 3.1.4

3.2.4 3.1.8 3.1.9

19

4. DEPENDENCY DESCRIPTION

 In this chapter, dependencies and relationships among the module described above

will be given

 4.1 Inter-module Dependencies

 In the previous chapter, design entities which decompose the web based integrated

development environment was given. Now we will start to put those modules into together

to make the system. Below class diagram represents the relationships and dependencies

among the modules of our Server component. Since interface component is simply the

bridge between the user and system, in this chapter we will focus on the modules of Server

component. Below mentioned class diagram and rest of the chapter will basically be

detailing the diagram.

20

4.1.1 ExternalInterface Module Dependency

Dependencies Type Description

None - -

4.1.2 User Module Dependency

Dependencies Type Description

Workspace aggregation User objects have a Workspace object.

Preferences aggregation User objects have a Preference object.

UserOperationException association User objects can throw UserOperationException if needed.

4.1.3 User Manager Dependency

Dependencies Type Description

User association User Manager objects have an access to User objects.

Session association User Manager objects have an access to Session objects.

UserOperationException association User Manager objects can throw UserOperationException if
needed.

4.1.4 Execution Manager Dependency

Dependencies Type Description
 None --- ---

4.1.5 File Module Dependency

Dependencies Type Description

None - -

21

4.1.6 Theme Module Dependency

Dependencies Type Description

None - -

4.1.7 Code Editor Module Dependency

Dependencies Type Description

File association Editor objects have an access to File objects.

Theme association Editor objects have an access to Theme objects.

4.1.8 Command Module Dependency

Dependencies Type Description
CommandLineManager association Each CommandLineManager could return list of

Command objects when needed.

4.1.9 Command Line Manager Module Dependency

Dependencies Type Description
User aggregation CommandLine objects have a User object.
Command associacition Each CommandLineManager could return list of Command

objects when needed.

22

5. INTERFACE DESCRIPTION

 In this chapter, interfaces of the web based integrated development environment will

be given. This chapter will provide everything that users, implementers, testers need to

know to use the system

 5.1 Module Interfaces

 In this section, we will provide an interface table for each module, which contains

name, type, accessibility and type signature of methods and attributes. Then we will

describe methods and attributes in detail.

 5.1.1 ExternalInterface Module Interface Description

Name Type Accessibility Signature

getRequest method public Response(string)

postRequest method Public Response(string)

Name Type Accessibility Signature

registerAccount method public void(String, User, User)

synchProject method public boolean(User, Project)

Name Type Accessibility Signature

getDirectory method(POST) public Response((FormParam)String)

getRequest:

 Performs an http get request on the Server.

postRequest:

 Performs a post request on the Server.

registerAccount:

 Registers a GitHub account for further synchronizations.

 synchProject:

 Synchronizes the project with GitHub repository which has been matched before.

23

getDirectory:

 Returns the content of the directory in form of HTML list to be used by Workspace

explorer.

 5.1.2 User Module Interface Description

Name Type Accessibility Type signature

id attribute private long

username attribute private String

password attribute private String

preferences attribute private Preferences

workspace attribute private Workspace

commands attribute private List<Commands>

getId method public long (void)

setId method public void (long)

getUsername method public String (void)

setUsername method public void (String)

getPassword method public String (void)

setPassword method public void (String)

getPreferences method public Preferences (void)

setPreferences method public void (Preferences)

getWorkspace method public Workspace (void)

setWorkspace method public void (Workspace)

getCommands method public List<String> (void)

addCommand method public void (String)

id:

 Stores id of User.

username:

 Stores username of User

password:

 Stores password of User.

preferences:

 Stores preferences of User.

workspace:

 Stores workspace of User.

24

commands:

 Stores previously entered commands of User.

getId:

 Returns id attribute of the user from User object.

setId:

 Sets id attribute of the user in registration process. If given id is already exists, it

throws an UserOperationException with an error message.

getUsername:

 Returns username attribute of the user from User object.

setUsername:

 Sets username attribute of the user in registration process, and user can update it

later on.

getPassword:

 Returns password attribute of the user from User object.

setPassword:

 Sets password attribute of the user in registration or update process.

getPreferences:

 Returns Preferences object of the user from User object.

setPreferences:

 Sets the user preferences

getWorkspace:

 Returns Workspace object of the user from User object.

setWorkspace:

 Sets the user workspace

getCommands:

 Returns commands attribute of the user from User object.

25

addCommand:

 Adds new command to the command attribute.

 5.1.3 User Manager Module Interface Description

Name Type Accessibility Type signature

loggedInUsers attribute public HashMap<Session, User>

login method(POST) public Response (String, String)

register method(PUT) public Response(User)

update method(POST) public Response (Session, User)

getUser method(GET) public Response(Session)

loggedInUsers:

 Stores Session and User objects of currently logged in users in a HashMap

login:

 POST method that returns Session in Response object of the logged in user if given

credentials are matched with database, otherwise gives an error message.

register:

 PUT method that returns success in Response if specified information is in correct

format, otherwise gives an error message.

update:

 POST method that returns updated User object in Response if updated information

are in correct format, otherwise throw an User Operation Exception.

getUser:

 GET method that returns Session in Response after login process

26

5.1.4 Execution Manager Module Interface Description

Name Type Accessibility Type signature

compile method public Boolean (File)

compile method public Boolean (Project)

debug method public void (Project, String)

run method public void (project, String)

setBreakpoint method public void (String, long)

getBreakpoints method public List<Long> (String)

stepInto method public void (String, long)

stepOver method public void (String, long)

stepOut method public void (String, long)

addExpresion method public void (String, String)

removeExpresion method public void (String, String)

evaluateExpresions method public HashMap<String, String> (String)

compile:

 Returns true if the given file or project successfully compiled, if not, it throws

Execution Operation Exception.

debug:

 Runs the executable compiled from project in debug mode.

run:

 Runs the executable compiled from project in normal mode.

setBreakpoint:

 Sets breakpoint to specified line in the given executable.

getBreakpoints:

 Returns list of breakpoint lines from the given executable.

stepInto :

 Execution steps into the function at the current line while running in debug mode.

stepOver:

 Execution steps over the current line while running in debug mode.

27

stepOut:

 Execution steps out from the current function while running in debug mode.

addExpresion:

 Adds expression to watch its value when it is available.

removeExpresion:

 Removes expression from watched list.

evaluateExpresions:

 Evaluates value of expressions in each step.

5.1.5 File Module Interface Description

Name Type Accessibility Type signature

filename attribute private String

fileContent attribute private String

fileType attribute private String

filePath attribute private String

setFilename method public void (String)

getFilename method public String (void)

setFileContent method public void (String)

getFileContent method public String (void)

setFileType method public void (String)

getFileType method public String (void)

setFilePath method public void (String)

getFilePath method public String (void)

Name Type Accessibility Type signature

getFile Method(GET) Public Response()

saveFile Method(POST) public String

filename:

 Stores the name of the file.

fileContent:

 Stores the content of the file.

28

fileType:

 Stores the type of the file.

filePath:

 Stores the path of the file in the server.

setFilename:

 Setter method for the filename attribute of the File object.

getFilename:

 Getter method for the filename attribute of the File object.

setFileContent:

 Setter method for the fileContent attribute of the File object.

getFileContent:

 Getter method for the fileContent attribute of the File object.

setFileType:

 Setter method for the fileType attribute of the File object.

getFileType:

 Getter method for the fileType attribute of the File object.

setFilePath:

 Setter method for the filePath attribute of the File object.

getFilePath:

 Getter method for the filePath attribute of the File object.

saveFile:

 POST method to save given content under the given file

getFile:

 GET method to obtain content of a file

29

5.1.6 Theme Module Interface Description

Name Type Accessibility Type signature

themeName attribute private String

keywordColorPairs attribute private HashMap<String, String>

backgroundColor attribute private String

textFamily attribute private String

textColor attribute private String

setThemeName method public void (String)

getThemeName method public String (void)

setKeywordColorPairs method public void (HashMap<String,
String>)

getKeywordColorPairs method public HashMap<String, String>
(void)

setBackgroundColor method public void (String)

getBackgroundColor method public String (void)

setTextFamily method public void (String)

getTextFamily method public String (void)

setTextColor method public void (String)

getTextColor method public String (void)

themeName:

 Stores the name of the theme.

keywordColorPairs:

 Stores the keyword-color code pairs for the theme.

backgroundColor:

 Stores the background color of the theme.

textFamily:

 Stores the text font family of the theme.

textColor:

 Stores the text color of the theme.

setThemeName:

 Setter method for the themeName attribute of the Theme object.

getThemeName:

30

 Getter method for the themeName attribute of the Theme object.

setKeywordColorPairs:

 Setter method for the keywordColorPairsattribute of the Theme object.

getKeywordColorPairs:

 Getter method for the keywordColorPairsattribute attribute of the Theme object.

setBackgroundColor:

 Setter method for the backgroundColor attribute of the Theme object.

getBackgroundColor:

 Getter method for the backgroundColor attribute of the Theme object.

setTextFamily:

 Setter method for the textFamily attribute of the Theme object.

getTextFamily:

 Getter method for the textFamily attribute of the Theme object.

setTextColor:

 Setter method for the textColor attribute of the Theme object.

getTextColor:

 Getter method for the textColor attribute of the Theme object.

5.1.7 Code Editor Module Interface Description

Name Type Accessibility Type signature

files attribute public List<File>

themes attribute public List<Theme>

currentTheme attribute public Theme

getHighlightedContent method public String (File)

getIndentedContent method public String (File)

completeExpression method public String(String, File)

setBreakpoint method public void (File, int)

getBreakpoints method public List<Integer> (void)

findExpression method public Int (String, File)

replaceExpression method public Boolean (String, File)

setTheme method public void (String)

31

files:

 Stores the opened files in the code editor.

themes:

 Stores the themes available for the code editor.

currentTheme:

 Stores the current theme for the code editor.

getHighlightedContent:

 This method returns the highlighted version of the file content according to the file

type and theme by using color codes.

getIndentedContent:

 This method returns the indented version of the file content according to the file

type.

completeExpression:

 This method returns the possible completion of the given expression in a file.

setBreakpoint:

 This method sets a breakpoint at a line by using the execution manager interface.

getBreakpoints:

 This method gets a list of breakpoints by using the execution manager interface.

findExpression:

 This method returns the first occurrence of the given expression in a file.

replaceExpression:

 This method returns true if the replacement of the first occurrence of the given

expression in a file. Otherwise it returns false.

setTheme:

 This method sets the currentTheme to the theme with the corresponding name.

32

5.1.8 Command Module Interface Description

Name Type Accessibility Type signature
commandName attribute Private String
arguments attribute Private String

availableOptions attribute Private String

setCommandName method Public void (String)
setArguments method Public void (List<String>)
setAvailableOptions method Public void (List<String>)
getCommandName method Public String (void)
getArguments method Public List<String> (void)
getAvailableOptions method Public List<String> (void)

commandName:

Stores name of the command.

arguments:

Stores list of the arguments command is supposed to take.

setCommandName:

Sets the commandName.

setArguments:

 Sets the arguments.

setAvailableOptions:

 Sets the availableOptions.

getCommandName:

Returns the name of the command.

getArguments:

 Returns the list of arguments.

getAvailableOptions:

 Return the list of available options.

33

5.1.9 Command Line Manager Module Interface Description

Name Type Accessibility Type signature
User attribute private User
enterCommand method public void (String)
nextCommand method public String (int)
previousCommand method public String (int)
getAvailableCommands method public Command (String)

Name Type Accessibility Type signature
sendRequest method public void(String)

getResponse method public String()

user:

 Stores User who is using the command line.

enterCommand:

 Gets the command entered by user and executes on the current workspace.

nextCommand:

Gets current command’s index and return the String value at user’s command list’s

(index+1) position if there is an available command

previousCommand:

Gets current command’s index and return the String value at user’s command list’s

(index-1) position if there is an available command

getAvailableCommands:

Gets a string and among available commands return commands which contains this

string

34

6. DETAILED DESIGN

 In this chapter, we will provide internal details of the modules. We will explain

identification, processing and data attributes of each module. Since interfaces and

dependencies of modules have been specified previously, we will not dwell much on these

subjects. We will, however, describe sequencing of events, actual process conditions and

paths.

 6.1 Module Detailed Design
 In this section, we will basically provide internal details of each module. To achieve

this, we will specify processing and data attributes of each module.

 6.1.1 ExternalInterface Module Detailed Design

Processing:

 As it has been specified in previous chapters, external interface will provide user

interaction with the Server component. Users will be required to login web page to use the

web based integrated development environment. Later any action user performed on the

Web page will reflected to the server.

 Web front end of the web based integrated development environment will be a

Backbone.Marionette Application. Marionette is a JavaScript framework which eases the

development of dynamic web pages.

 In the Server component RESTful services will be implemented. Through these

services web page will interact with the Server. Since Marionette provides huge flexibility,

every operation is not required to handle by the Server. However, when data changes on the

web page or user wants to perform an operation over the Server component, Marionette

application will make get and post requests to RESTful API and perform the necessary

changes on the web GUI according to the response sent back by the Server.

 Also RESTful services for the workspace explorer will be served by this module. POST

method will be used to content of a directory. Since jqueryFileTree is used as front end

architecture of the workspace explorer and it requires directory content in form of HTML list,

this method is required to take a path of a directory as parameter and return content of

specified directory in form of HTML list.

35

Data:

 There will be any data attribute specifically kept by the external interface module. All

the incoming data will be served to appropriate module. For example when user gave the

GitHub repository credentials, these data will be saved on the User module. Since web front

end will be dynamic JavaScript application, all the data will be sent to server through the

RESTful API.

 6.1.2 User Module Detailed Design

Processing:

 When user login to the system, his id and password are needed to identify him, and

create his session object. Therefore, we need getters and setters for id, username, and

password attributes. In addition, after login, system must prepare workspace according to

the predefined Preferences and Workspace object by user. System must be able to get, and

user must be able to change these objects. Hence, this module also has getters and setters

for Preferences and Workspace objects. Lastly, in order to keep user’s pre-entered

commands to provide quick access later on, the module has getter and adder for commands.

Data:

 This module has six attributes namely Id that specifies id of the user as a long,

Username that specifies username of the user, Password that specifies password of the user,

Preferences that specifies preferences of the user such as theme, GitHub sync, Workspace

that specifies workspace and its properties of the user, Commands that specifies commands

entered previously by the user.

 6.1.3 User Manager Module Detailed Design

Processing:

 This module is responsible for user authentication. When user wants to use system,

he must be registered to the system if it is not previously, right after login to the system with

his credentials. Thus, User Manager module provides register and login RESTful services. In

addition, in case user wants to change his credentials, the module provides update method

for user. This module also provides getUser method to return User object.

Data:

36

 This module has only one attribute namely LoggedInUsers that specifies online users.

In other words, when a user logged in to the system, his Session and User objects will be

stored in this attribute.

6.1.4 Execution Manager Module Detailed Design

Processing:

 This module manages all execution process. For execution, system must create

executable. For this purpose, since it must be able to compile a File or Project object, this

module provides compile function with File or Project arguments.

 After compilation, system provides run in normal mode or debug mode with created

executable. Hence, there are run and debug functions in this module.

 To control execution of debug mode, system provides setter and getter for

breakpoints, and stepInto, stepOver, stepOut functionalities. During any step of the

execution, so that user is able to watch values of attributes, system also provides add

remove and evaluate expression functions.

Data:

 This module must have a list of long numbers to keep breakpoint lines in increasing

order. In addition, in debug mode to store watched expressions and their values, it uses a

HashMap.

6.1.5 File Module Detailed Design

Processing:

 This module is responsible for file related operations in the code editor. This module

provides a level of abstraction above the communication between the server and website on

opened files in the editor. It is used by the Editor interface in operations like syntax

highlighting, indentation, expression completion, find and replace, etc. Since the attributes

of this module are private fields, it also consists of getter and setter methods for these

attributes.

37

 This module also provides two RESTFul services to handle request from clients. These

services are responsible of file operations. Any client with appropriate permission can get or

save a file to server by calling these AJAX services.

Data:

 This module has four attributes that represents file name, file content, file type, and

the file path on the server.

6.1.6 Theme Module Detailed Design

Processing:

 This module is responsible for keeping the themes available for the code editor. It is

used by the Editor interface for keeping available themes and current active theme. It is also

used in a method that sets the current editor theme by using the theme name.

Data:

 This module has five attributes representing the theme name, keyword-color code

pairs in a hash map that is used for coloring the specific keywords, background color, text

font family, and text color for the editor.

6.1.7 Code Editor Module Detailed Design

Processing:

 This module is responsible for keeping information about opened files, available

themes and current active theme in the code editor by using File and Theme modules. It also

handles the highlighting, indentation, expression completion, find and replace operations,

breakpoint setting and displaying by using the execution manager interface.

Data:

 This module consists of three public attributes representing list of opened files that is

using the File module, list of available themes and a current theme that using the Theme

module.

38

6.1.8 Command Module Detailed Design

Processing:

 This module will be used as a model for commands. It has no methods except setter-

getter methods for command name, arguments and available options.

Data:

 The module will keep name of the command, arguments command need to take and

available options which can e used with the command.

6.1.9 Command Line Manager Module Detailed Design

Processing:

 Command line manager module provides basic functionality that a standard Unix-like

command line have. For this purpose it has four methods which are enterCommand,

nextCommand, previousCommand and getAvailableComands.

It will take the command entered by user using enterCommand method and execute

it in Unix based server’s terminal. If the command is invalid, the situation will be handled by

exception class.

previousCommand and nextCommand methods will provide opportunity to travel

through commands entered before. These methods will use User’s command list to get

command history.

When user start typing a command, every time a new character typed

getAvaialableCommands method will be used and it will return available commands.

 This module also provides two WebSocket methods to exchange data between client

and server. Client sends the commands entered to the server while the server sends results

when they are generated.

Data:

 The module will keep a User object since command history is special for every user.

39

