

Test Specification Document

DEVCLOUD Web Based
Integrated Development

Environment

TinTin

Alican Güçlükol

Anıl Paçacı

Meriç Taze

Serbay Arslanhan

Index

1. Introduction .. 3

1.1 Goals and Objectives ... 3

1.2. Statement of Scope .. 4

1.3. Major Constraints .. 4

1.4. Definitions, Acronyms and Abbreviations ... 5

2. Updates ... 6

3. Test Plan .. 6

4. Test Cases ... 7

4.1 Authentication Functional Test Cases ... 7

4.2 Workspace Explorer Functional Test Cases .. 8

4.3 Code Editor Functional Test Cases .. 11

4.4 CLI Functional Test Cases .. 15

4.5 Build- Run Functional Test Cases .. 18

5. Test Resources and Staffing .. 21

6. Test Schedule .. 22

1. Introduction

CLOUD IDE is an application providing functionality of Integrated Development Environments

over a distributed cloud resources. This project has two main components, namely server

component and user interface components. Actually user interface is the main component, which

will be the product delivered at the end of implementation and server is the component providing

functionality to client at backend. To develop and durable, stable, well-integrated and reliable

system, a complete test plan who will cover all the functionalities is required. The need of test plan is

the purpose of this document. This TSR document is prepared for that purpose. In this document,

after a brief introduction, we will present our test plan by describing overall testing strategy, and

detailed test procedure including test tactics and test cases for the project. Then, information about

testing resources and staffing, test work products, test record keeping, and test log will be given.

Moreover, organization and responsibilities will be clearly explained. Finally, our test schedule for the

whole test period will be described.

1.1 Goals and Objectives

As in the production process all of softwares, testing phase is important to ensure the quality and

stability of the product delivered. To ensure these, we will test components of the software

separately; later performance and integration test will be applied on final product.

1.2. Statement of Scope

This document is prepared for the specification of testing process of TinTin CLOUD IDE project. In

this document, we mainly focus on:

 What is to be tested

 Constraints on test phase

 How bugs will be handled

 Testing Strategies and Procedures

 Responsible group members and testing schedule

1.3. Major Constraints

There are some main constraints which had effect on implementation of this product. These

constraints are given below and they also have impact on the testing phrase.

 Time:

Optimization of all modules for better performance and any possible speed up in the

implementation has an essential importance because of the limited time for the project to be

completed. So in DEVCLOUD - IDE, implementation and testing are done in parallel. In other

words, whenever a new functionality is added to the system required tests are done

immediately.

 Data:

Since there are lots of different services passing data through each other and there are many

different data needs to be saved on the server, any minimization on data is a data constraint goal.

 Number of People:

Since there will be only one kind of users, which are the software developers, people with

different characteristic involved in test phase will speed up implementation and improve quality of

the final product.

 Hardware:

On the client side, there will not any problem about the hardware requirements since nowadays

almost any phone can render HTML5 pages. However, on the server side, there will be multiple users

and requests at a time, capabilities of server hardware is of importance and should not be unnoticed

during test phase.

1.4. Definitions, Acronyms and Abbreviations

IDE: Integrated Development Environment

CLI: Command Line Interface

TSR: Test Specifications Report

TRAC: Trac is an open source, web-based project management and bug-tracking tool.

1.5. References

Test Specification Template, METU Computer Engineering, Spring 2012

 Pressman, Roger S. Software Engineering: A Practitioner's Approach, Sixth edition. New York, NY:

McGraw-Hill

IEEE Standard for Software Test Documentation

Detailed Design Report prepared by TinTin

2. Updates

Section Name Section
Number

Status

Workspace Explorer Functional Test
Cases

4.2 new test added

Code Editor Functional Test Cases 4.3 new test added

CLI Functional Test Cases 4.4 new test added

Build-Run Functional Test Cases 4.5 new test added

3. Test Plan

The purposes of these tests are to test the product whether it accomplishes the

requirements that are implemented. The main objective is to test the functionality of the

product. Also the detailed objective for each test case is described. In this process certain inputs

are applied to software and responses to these inputs as outputs are tested. In these tests both

positive and negative scenario tests are considered and run on software. The test cases are

categorized as below:

Test Number Test Name

1 Authentication Functional Test Cases
2 Workspace Explorer Functional Test Cases
3 Code Editor Functional Test Cases
4 CLI Functional Test Cases
5 Build – Run Functional Test Cases

4. Test Cases

In this section, test cases which are grouped in previous section will be described in detail.

4.1 Authentication Functional Test Cases

Test Case ID Authentication – 01
Test Case Name Authentication – User registration with Invalid Parameters
Test Type Functional Test
Test Case Description Trying to register to system with missing parameters
Test Case Objective To test whether software registration process is capable of applying

conditions for user registration
Input User Input
Pre-Conditions Browser directed to Login page
Steps 1. Open home page

2. Click Register button
3. Enter all parameters, e-mail
4. Click Register button

Expected Response An alert stating that required field(s) missing
 Post Conditions Stay in login Page

Test Case ID Authentication – 02
Test Case Name Authentication – User registration with Valid Parameters
Test Type Functional Test
Test Case Description Trying to register to system with valid parameters
Test Case Objective To test whether software registration process is capable of applying

conditions for user registration
Input User Input
Pre-Conditions Browser directed to Login page
Steps 1. Open home page

2. Click Register button
3. Enter all parameters
4. Click Register button

Expected Response An alert stating that registration is complete
 Post Conditions User directed to main screen of product

Test Case ID Authentication – 03
Test Case Name Authentication – User Sign in with Invalid Credentials
Test Type Functional Test
Test Case Description Trying to login to system with invalid credentials
Test Case Objective To test whether software registration process is capable of applying

conditions for user authentication
Input User credentials
Pre-Conditions Browser directed to Login page
Steps 1. Open home page

2. Enter all parameters as random strings

4. Click Login button
Expected Response An alert stating that invalid credentials
 Post Conditions Stay in login Page

Test Case ID Authentication – 04
Test Case Name Authentication – User registration with Valid Parameters
Test Type Functional Test
Test Case Description Login system with correct credentials
Test Case Objective To test whether software registration process is capable of applying

conditions for user registration
Input User credentials
Pre-Conditions Browser directed to Login page, User already registered
Steps 1. Open home page

2. Enter all parameters credentials
3. Click Login button

Expected Response Re-direction to product main page
 Post Conditions User logged in system
Test Case ID Authentication – 05
Test Case Name Authentication – User Logout
Test Type Functional Test
Test Case Description Trying to logout from system
Test Case Objective To test whether software allows to logout of the system
Input User Input
Pre-Conditions User successfully logged in
Steps 1. Open home page

2. Login system
3. Stay in main page
4. Click Logout button

Expected Response An alert stating that user successfully logged out
 Post Conditions Re-direction to Login Page

4.2 Workspace Explorer Functional Test Cases

Test Case ID Workspace Explorer – 01
Test Case Name Workspace Explorer – Create file
Test Type Functional Test
Test Case Description Trying to create a new file
Test Case Objective To test whether software allows to create a new file
Input User Input
Pre-Conditions User successfully logged in
Steps 1. Open main page

2. Click Menu
3. Click New File
4. Write test.txt to dialog
5. Click OK

Expected Response A file with name test.txt must be created and opened
 Post Conditions Give focus to created file

Test Case ID Workspace Explorer – 02
Test Case Name Workspace Explorer – Open file
Test Type Functional Test
Test Case Description Trying to open a file
Test Case Objective To test whether software allows to open a file
Input User Input
Pre-Conditions User successfully logged in

At least one file must be exist
Steps 1. Open main page

2. Click a file from the file explorer
Expected Response Selected file must be opened in a new tab
 Post Conditions Give focus to opened file

Test Case ID Workspace Explorer – 03
Test Case Name Workspace Explorer – Save file
Test Type Functional Test
Test Case Description Trying to save a file
Test Case Objective To test whether software allows to save a file
Input User Input
Pre-Conditions User successfully logged in

At least one file must be exist
Steps 1. Open main page

2. Click a file from the file explorer
3. Add some text
4. Click to File > Save File
5. Close and reopen the file

Expected Response Reopened file content must be the same with closed one
 Post Conditions -

Test Case ID Workspace Explorer – 04
Test Case Name Workspace Explorer – Close file
Test Type Functional Test
Test Case Description Trying to close a file
Test Case Objective To test whether software allows to close a file
Input User Input
Pre-Conditions User successfully logged in

At least one file must be exist
Steps 1. Open main page

2. Click a file from the file explorer
3. Click to File >Close

Expected Response File tab must be closed.
 Post Conditions Give focus to previous tab

Test Case ID Workspace Explorer – 05
Test Case Name Workspace Explorer – New file
Test Type Functional Test
Test Case Description Trying to create new file
Test Case Objective To test whether software allows to create a new file
Input User Input
Pre-Conditions User successfully logged in
Steps 1. Open main page

2. Right click a folder from the file explorer
3. Click to New File
4. Write file name
5. Click ok

Expected Response New file must be created with the given name
 Post Conditions Refresh file tree to show new file

Test Case ID Workspace Explorer – 06
Test Case Name Workspace Explorer – New folder
Test Type Functional Test
Test Case Description Trying to create new folder
Test Case Objective To test whether software allows to create a new folder
Input User Input
Pre-Conditions User successfully logged in
Steps 1. Open main page

2. Right click a folder from the file explorer
3. Click to New Folder
4. Write folder name
5. Click ok

Expected Response New folder must be created with the given name
 Post Conditions Refresh file tree to show new folder

Test Case ID Workspace Explorer – 07
Test Case Name Workspace Explorer – Build
Test Type Functional Test
Test Case Description Trying to build a project
Test Case Objective To test whether software allows build a project
Input User Input
Pre-Conditions User successfully logged in
Steps 1. Open main page

2. Right click a folder which contains a Makefile from the file explorer
3. Click to Build

Expected Response Folder must be built according to Makefile
 Post Conditions Refresh file tree to show new folder

4.3 Code Editor Functional Test Cases

Test Case ID Code Editor – 01
Test Case Name Code Editor – Syntax Highlighting
Test Type Functional Test
Test Case Description Code editor syntax highlighting feature for the specified programming

language
Test Case Objective To test whether code editor is capable of highlighting the keywords,

variables, data types correctly
Input Sample C code written in the editor
Pre-Conditions User have logged in, created a C source file and opened it with the code

editor.
Steps 1. Login to the system

2. Create a sample C source file
3. Open the file with the code editor

Expected Response The code will be highlighted according to the C programming language
syntax

 Post Conditions

Test Case ID Code Editor – 02
Test Case Name Code Editor – Auto Indentation
Test Type Functional Test
Test Case Description Code editor auto indentation feature for the specified programming

language
Test Case Objective To test whether code editor is capable of indenting the code with respect

to the current position of the cursor
Input Sample C code written in the editor
Pre-Conditions User have logged in, created a C source file and opened it with the code

editor.
Steps 1. Login to the system

2. Create a sample C source file
3. Open the file with the code editor

Expected Response The code will be indented automatically when the user presses ‘Enter’
key after writing a line of code.

 Post Conditions

Test Case ID Code Editor – 03
Test Case Name Code Editor – Bracket/Brace matching
Test Type Functional Test
Test Case Description Code editor bracket/brace matching feature
Test Case Objective To test whether code editor is capable of matching the brackets and

braces with their pairs
Input Sample C code written in the editor
Pre-Conditions User have logged in, created a C source file and opened it with the code

editor.
Steps 1. Login to the system

2. Create a sample C source file
3. Open the file with the code editor

4. Place the cursor on a bracket or brace
Expected Response The matching bracket or brace will be shown within a square encloses it.
 Post Conditions

Test Case ID Code Editor – 04
Test Case Name Code Editor – Auto-completion
Test Type Functional Test
Test Case Description Code editor auto-completion feature
Test Case Objective To test whether code editor is capable of providing auto-completion

options for a given word
Input Sample C code written in the editor
Pre-Conditions User have logged in, created a C source file and opened it with the code

editor.
Steps 1. Login to the system

2. Create a sample C source file
3. Open the file with the code editor
4. Type some part of the word that will be completed
5. Press Ctrl+Space keys

Expected Response A set of options that are available in the file for the given word will be
shown in a box under the cursor.

 Post Conditions

Test Case ID Code Editor – 05
Test Case Name Code Editor – Find
Test Type Functional Test
Test Case Description Code editor find feature
Test Case Objective To test whether code editor is capable of finding a given word in the

source file
Input Sample C code written in the editor
Pre-Conditions User have logged in, created a C source file and opened it with the code

editor.
Steps 1. Login to the system

2. Create a sample C source file
3. Open the file with the code editor
4. Click the Find link in the Edit menu
5. Type the word that will be searched in the document into the provided
input field

Expected Response The matching occurrences of the given word will be enclosed within a
square if there is any.

 Post Conditions

Test Case ID Code Editor – 06
Test Case Name Code Editor – Replace
Test Type Functional Test
Test Case Description Code editor replace feature

Test Case Objective To test whether code editor is capable of replacing a given word with the
given replacement word in the source file

Input Sample C code written in the editor
Pre-Conditions User have logged in, created a C source file and opened it with the code

editor.
Steps 1. Login to the system

2. Create a sample C source file
3. Open the file with the code editor
4. Click the Replace link in the Edit menu
5. Type the word that will be searched in the document into the provided
input field
6. Type the word that will be replaced with the found occurrences of the
searched word in the document into the provided input field

Expected Response The matching occurrences of the given word will be replaced with the
given word.

 Post Conditions

Test Case ID Code Editor – 07
Test Case Name Code Editor – Editor Themes
Test Type Functional Test
Test Case Description Code editor multiple editor themes feature
Test Case Objective To test whether code editor is capable of providing multiple editor

themes
Input Sample C code written in the editor
Pre-Conditions User have logged in, created a C source file and opened it with the code

editor.
Steps 1. Login to the system

2. Click the Options link in the Edit menu
3. Choose a different theme from the combo-box provided
4. Open a file with the code editor

Expected Response The selected editor theme will be applied to the editors opened after this
point.

 Post Conditions

Test Case ID Code Editor – 08
Test Case Name Code Editor – Displaying line numbers
Test Type Functional Test
Test Case Description Code editor displaying line numbers feature
Test Case Objective To test whether code editor is capable of displaying the corresponding

line numbers in the source file
Input Sample C code written in the editor
Pre-Conditions User have logged in, created a C source file and opened it with the code

editor.
Steps 1. Login to the system

2. Create a sample C source file
3. Open the file with the code editor

Expected Response The corresponding line numbers for each line in the source file will be

displayed in the gutter part of the editor.
 Post Conditions

Test Case ID Code Editor – 09
Test Case Name Code Editor – Type Navigator
Test Type Functional Test
Test Case Description Code editor generates type navigator for opened file on the editor

and show this navigator on the left side of the editor
Test Case Objective To test whether code editor is capable of generating type navigator

and its functionality correctly
Input Sample C code written in the editor
Pre-Conditions User have logged in, created a C source file and opened it with the code

editor.
Steps 1. Click “Edit->Show type navigator” from top menu

2. Click on a function from the navigator
Expected Response The navigator will be showing all functions and the cursor will go to

the line where function defined and that line will be highlighted
 Post Conditions

Test Case ID Code Editor – 10
Test Case Name Code Editor – Navigate to function
Test Type Functional Test
Test Case Description When Alt+F3 typed while the cursor is on a function name cursor

moves to the line where that function is defined. If the function is defined
on another file first that file is opened

Test Case Objective To test whether code editor is capable to process Alt+F3 short-cut
correctly

Input Sample C code written in the editor
Pre-Conditions User have logged in, created a C source file, opened it with the code

editor and cursor is on a function name
Steps 1. Type Alt+F3
Expected Response If the definition is on another file first that file will be opened.

The cursor goes to the line where the function is defined
 Post Conditions

4.4 CLI Functional Test Cases

Test Case ID CLI – 01
Test Case Name CLI – Running a valid command
Test Type Functional Test
Test Case Description Trying to run a valid Unix command with valid parameters on terminal
Test Case Objective To test whether the software is able to run Unix commands and give

appropriate response
Input User Input
Pre-Conditions 1. Browser directed to the software page

2. CLI is opened on the page
Steps 1. Type a valid command on the command line

2. Press enter
Expected Response Result of the command shown in terminal or user’s workspace depending

the command
Post Conditions Command line is ready for a new command

Test Case ID CLI – 02
Test Case Name CLI – Running an invalid command
Test Type Functional Test
Test Case Description Trying to run an invalid Unix command on terminal
Test Case Objective To see the response of system to an invalid command
Input User Input
Pre-Conditions 1. Browser directed to the software page

2. CLI is opened on the page
Steps 1. Type an invalid command on the command line

2. Press enter
Expected Response An error message is shown in command line which indicates that there is

no such a command
Post Conditions Command line is ready for a new command

Test Case ID CLI – 03
Test Case Name CLI – Running a valid command with invalid parameters
Test Type Functional Test
Test Case Description Trying to run a valid command with invalid parameters on terminal
Test Case Objective To see the response of system to invalid parameters
Input User Input
Pre-Conditions 1. Browser directed to the software page

2. CLI is opened on the page
Steps 1. Type a valid command but invalid parameters on the command line

2. Press enter
Expected Response An error message is shown in command line which indicates that

parameters are invalid and gives information about valid parameters
Post Conditions Command line is ready for a new command

Test Case ID CLI – 04
Test Case Name CLI – Going back on the command history
Test Type Functional Test
Test Case Description Trying to view past commands using keyboard
Test Case Objective To test whether past commands could be viewed by pressing “up” key
Input Keyboard event
Pre-Conditions 1. User successfully logged in

2. CLI is opened on the page
3. At least one command is executed after CLI is opened
4. Cursor is on the command line

Steps 1. Press “up” key from keyboard
Expected Response Command executed just before the current command is shown on the

command line
Post Conditions

Test Case ID CLI – 05
Test Case Name CLI – Going forward on the command history
Test Type Functional Test
Test Case Description Trying to view commands newer than the command which is being

viewed currently
Test Case Objective To test whether newer commands could be viewed by pressing “down”

key
Input Keyboard event
Pre-Conditions 1. User successfully logged in

2. CLI is opened on the page
3. At least one command is executed after CLI is opened
4. A past command is viewed by using “up” key

Steps 1. Press “down” key from keyboard
Expected Response Command executed just after the current command is shown on the

command line
Post Conditions

Test Case ID CLI – 06
Test Case Name CLI – Viewing available commands
Test Type Functional Test
Test Case Description Trying to view available commands which includes the phrase typed so

far
Test Case Objective To test whether available matching commands could be listed on

terminal by pressing “tab” key on keyboard
Input Keyboard event
Pre-Conditions 1. User successfully logged in

2. CLI is opened on the page
3. Cursor is on the command line

Steps 1. Press “tab” key from keyboard
Expected Response Available matching command are listed on terminal
Post Conditions Command line returns the situation before “tab” key is pressed

Test Case ID CLI – 07
Test Case Name CLI – Point Home Directory
Test Type Functional Test
Test Case Description CLI starts at home directory by default
Test Case Objective To ensure that whenever new CLI is opened, it points to the users home

directory
Input Click event on terminal
Pre-Conditions 1. User successfully logged in

2. CLI is opened on the page
Steps 1. Open Terminal Window
Expected Response Terminal will point to users home directory
Post Conditions Ready terminal at users home directory

Test Case ID CLI – 07
Test Case Name CLI – Permissions on System Folder
Test Type Functional Test
Test Case Description Trying to modify system files
Test Case Objective To ensure user is privileged to read and execute system files, but not

modify them
Input Keyboard event
Pre-Conditions 1. User successfully logged in

2. CLI is opened on the page
3. Cursor is on the command line
4. cd into root directory
5. try to remove existing directory

Steps 1. type “cd /”
2. type “rm –rf usr”

Expected Response User can change directory but not remove file
Post Conditions Command line returns “permission denied” error

Test Case ID CLI – 08
Test Case Name CLI – Permissions on other users files
Test Type Functional Test
Test Case Description Trying to modify other users files
Test Case Objective To ensure that user does not have any permissions on other users files
Input Keyboard event
Pre-Conditions 1. User successfully logged in

2. CLI is opened on the page
3. Cursor is on the command line
4. cd into upper directory
5. try to navigate into other users directory

Steps 1. Type “cd ..”
2. Type “ls” and see other users folders
3. Type “cd <folder name>”

Expected Response User will not be able to navigate other users directory
Post Conditions Command line returns the “can’t cd into <folder name>” error

4.5 Build- Run Functional Test Cases

Test Case ID Build-Run – 01
Test Case Name Build-Run – Build with unsupported file type
Test Type Functional Test
Test Case Description Trying to build a unsupported file type
Test Case Objective To test whether software allows to build a unsupported file type
Input User Input
Pre-Conditions User successfully logged in

An unsupported file must exist in workspace
Steps 1. Open main page

2. Select the file from workspace explorer
3. Click Build button

Expected Response An alert stating that build is not supported for that file type
 Post Conditions Give focus to editor

Test Case ID Build-Run – 02
Test Case Name Build-Run – Build when Terminal tab focused
Test Type Functional Test
Test Case Description Trying to build when a terminal tab is focused
Test Case Objective To test whether software handle the build on a terminal tab
Input User Input
Pre-Conditions User successfully logged in
Steps 1. Open main page

2. Open a new terminal from the menu
3. Click Build button

Expected Response An alert stating that build cannot be done on a terminal tab
 Post Conditions Give focus to terminal

Test Case ID Build-Run – 03
Test Case Name Build-Run – Build without file
Test Type Functional Test
Test Case Description Trying to build when there is no opened file
Test Case Objective To test whether software allows to build when there is no opened file
Input User Input
Pre-Conditions User successfully logged in
Steps 1. Open main page

2. Close all tabs if exists
3. Click Build button

Expected Response An alert stating that build cannot be done if there is no opened file
 Post Conditions Give focus to page

Test Case ID Build-Run – 04
Test Case Name Build-Run – Build with supported file type
Test Type Functional Test
Test Case Description Trying to build a supported file type
Test Case Objective To test whether software allows to build a supported file type
Input User Input
Pre-Conditions User successfully logged in

A supported file must exist in workspace
Steps 1. Open main page

2. Select the file from workspace explorer
3. Click Build button

Expected Response An alert stating that build is completed successfully
 Post Conditions Open a terminal tab, and show the output

Test Case ID Build-Run – 05
Test Case Name Build-Run – Run an executable built before
Test Type Functional Test
Test Case Description Run an executable built before
Test Case Objective To test whether software allows to run executable properly
Input User Input
Pre-Conditions User successfully logged in

An executable must exist in workspace
Steps 1. Open main page

2. Select the executable from workspace explorer to run
3. Click Run button

Expected Response A new terminal appears as a tab that is used to allow the user to enter
input and see the output

 Post Conditions The program exits

Test Case ID Build-Run – 06
Test Case Name Build-Run – Run an executable that tries to open a file located outside the

workspace
Test Type Functional Test
Test Case Description Run an executable that tries to open a file located outside of the user

workspace
Test Case Objective To test whether application limits the user’s access to other users’

workspaces
Input -
Pre-Conditions User successfully logged in

An executable must exist in workspace
Steps 1. Open main page

2. Select the executable that tries to open a file located outside of the
user’s workspace from workspace explorer to run
3. Click Run button

Expected Response The program aborts because it does not have the permission to open the
files that are located outside of the user’s workspace

 Post Conditions The program exits

Test Case ID Build-Run – 07
Test Case Name Build-Run – Set breakpoints in debug mode
Test Type Functional Test
Test Case Description Set breakpoints for an executable
Test Case Objective To test whether the user is able to stop the program execution by setting

breakpoints
Input -
Pre-Conditions User successfully logged in

An executable must exist in workspace
Steps 1. Open main page

2. Set breakpoints by clicking on the gutter part of the editor
3. Select the executable from workspace explorer to debug
4. Click Debug button

Expected Response The program stops execution and waits for the user’s command to
continue at the given breakpoint

 Post Conditions The user continues debugging

Test Case ID Build-Run – 08

Test Case Name Build-Run – Continue in debug mode
Test Type Functional Test
Test Case Description Continue execution for an executable that is stopped at the given

breakpoint
Test Case Objective To test whether the user is able to make the program continue from a

breakpoint that is set before
Input -
Pre-Conditions User successfully logged in

An executable must exist in workspace
Steps 1. Open main page

2. Set breakpoints by clicking on the gutter part of the editor
3. Select the executable from workspace explorer to debug
4. Click Debug button
5. When the program stops, click Continue button.

Expected Response The program continues execution
 Post Conditions The user continues debugging

Test Case ID Build-Run – 09

Test Case Name Build-Run – Step in debug mode
Test Type Functional Test
Test Case Description Continue one more step to execution for an executable that is stopped at

the given breakpoint
Test Case Objective To test whether the user is able to make the program step a line from a

breakpoint that is set before
Input -
Pre-Conditions User successfully logged in

An executable must exist in workspace
Steps 1. Open main page

2. Set breakpoints by clicking on the gutter part of the editor

3. Select the executable from workspace explorer to debug
4. Click Debug button
5. When the program stops, click Step button.

Expected Response The program steps one line and waits for further commands
 Post Conditions The user continues debugging

5. Test Resources and Staffing

All the functional tests described above will be tested by all group members to have a common

opinion about the product functionalities. Also testes will be applied by non-developers as well to

have an unbiased opinion about the product. However, preparation and evaluation of the tests will

be done as follow:

Test Name Responsible Member

Authentication Tests Anıl Paçacı

Workspace Tests Meriç Taze

Code Editor Tests Serbay Arslanhan – Alican Güçlükol

CLI Tests Alican Güçlükol

Build – Run Tests Meriç Taze – Serbay Arslanhan

6. Test Schedule

Below table shows a detailed scheduling of the tests.

Test Name Deadline Final Demo Deadline

Authentication Tests 30.04.2013 30.04.2013

Workspace Tests 05.05.2013 30.05.2013

Code Editor Tests 15.05.2013 02.06.2013

CLI Tests 15.05.2013 06.06.2013

Build – Run Tests 05.05.2013 06.06.2013

