
CENG HISTORY X-MUSIC RECOMMENDATION SYSTEM-ITERATION REPORT 3

Team members

1) Hacer Nihal Tarkan, 1744291, tarkan.nihal@gmail.com

2) Birant Altınel, 1745744 birantaltinel@gmail.com

3) Ayşe Aybüke Taşdirek, 1746353 aybuketasdirek@gmail.com

4) Asena Ok, 1746296, asenaok@gmail.com

RECOMMENDATION ALGORITHM

We have been used Collaborative Filtering algorithm to make recommendation to the users. You

can find the detailed technical explanations in Iteration2 report. In this report, to indicate our

algorithm more clearly, we show our neo4j database structure and a graphical use case example:

Database Structure

Figure 1: Neo4j Graph Database

Our primary neo4j graph database consists of 4 different types of nodes:

-User

-Song

mailto:tarkan.nihal@gmail.com
mailto:birantaltinel@gmail.com
mailto:aybuketasdirek@gmail.com
mailto:asenaok@gmail.com

-Album

-Performer

All these nodes have some attributes of their own. Since our Recommender Algorithm mainly

depends on the relations between users and the songs they listen, the most important relationship

to mention is “LISTENED_TO” which is a neo4j relationship between a “User” node and a

“Song” node. The “LISTENED_TO” relationship has its own attributes which hold information

about the date and time a user has listened to a specific song and how many times in total the

user has listened to it along with the users rating to the song. This information is excessively

used during the recommendation steps.

The background stages of our recommendation system are clarified by an example below:

1) Calculating Similarity between Users: First of all, we find the users have common rated

items with the active user. By using the formula below, we find a similarity value between those

users and active user. Please find the definitions of formula that used for calculating this

similarity in the iteration2 report.

Figure 2: Similar Users

2) Calculating Prediction Value for Songs: We calculate this similarity value only for songs

that listened by top 10 similar users with the active user. Before using the prediction formula we

eliminate the duplicate songs and the songs that already listened by active user.

Figure 3: Recommended Songs

EVALUATION

DATA SET

Our dataset is divided into two separate parts and stored in two different databases, one of them

containing the training data and the other containing the test data. We have used %90 of the data

for training and %10 of the data for testing

Properties of the Primary Database(Used for Training):

Number of songs: 1204033

Number of users: 103300

Average number of songs per user: 11.66

Additional properties:

Number of performers: 271546

Number of albums: 129885

Properties of the Secondary Database(Used for Test and Evaluation):

Number of songs: 1204033

Number of users: 223515

Average number of songs per user: 5.39

These two databases are created with respect to the number of user logs that separates the

datasets %90 to %10. We thought using the proportion of the number of user logs would be the

healthiest way to divide the dataset, mainly because each user log uniquely defines a relationship

between a user and a song inside the database and we primarily use these relationships in the

recommendation and evaluation algorithms.

The Primary Database is used in the Recommendation Module. The collaborative filtering is

performed within this database; personalized predictions are created using the metrics that are

explained in the previous section. Then these predictions are presented to the user by sorting

them with their “prediction” value and selecting the top items.

The Secondary Database is used for testing and evaluating the accuracy of the recommendation

system. The detailed description of the “Evaluation” procedure is explained in the next section

along with the “Precision Metric” that is used. We refer to everything collaborated with a user

inside the Secondary Database as “user history”, more specifically user’s “future history”.

Basically the algorithm compares the given recommendations with the future actions of the

active user to calculate an accuracy value to determine what portion of the recommended songs

is reliable.

EVALUATION METRICS

We have used the Precision Metric to evaluate our recommendation algorithm.

Precision metric, evaluates the proportion of the intersecting song number between the

recommendation list & user history in the test data, to the whole recommended songs. In other

words it is the proportion of successful recommendations to the whole recommended songs.

The formula is given below:

 Recommended Not recommended

Used True-Positive False-Negative

Not Used False-Positive True-Negative

Table 1: Recommendation Status

True positive, here, means the truly predicted songs in the rec. list, false positive stands for the

opposite ones.

For this iteration, we compute the precision result of the user with the userID “233041”, for the

demo session, as an example.

We have calculated the recommendation algorithm formulas for all of the similar users of

233041, who have at least one common listened song with the user 233041. Then according to

step by step implementation of the recommendation algorithm, at the last level, we sort the

song’s p* values (* explained in recommendation algorithm part).

Then we chose the top 10 songs which have the highest p values to recommend to the user

233041.

After the recommendation algorithm is completed, we shifted to the second database (test set)

and search the user history to find out the matching song count with the recommended songs.

RESULTS

Method / Metric Precision Metric

User Similarity Based Recommendation 0.2

Table 2: Precision Metric

As it is inferred from the table, we have used one metric for the evaluation till now. Our

evaluation result, in total data is almost 0.0 as we mentioned in the demo session. We have

analyzed the condition and decided to improve our recommendation algorithm at first hand.

Since the data set has not much reliable attributes to use, we first started to improve the rec

algorithm based on user similarity but not using song related attributes has caused a lot of 0.0

evaluation result in this level. Till the 4Th iteration, we are planning to redesign algorithm and

then test this algorithm with again this precision metric and additional useful metrics to see our

results improving.

