
1

SOFTWARE DESIGN DESCRIPTION

OF

MUSIC RECOMMENDATION SYSTEM

CENG HISTORY X

HACER NİHAL TARKAN

AYŞE AYBÜKE TAŞDİREK

ASENA OK

BİRANT ALTINEL

2

PREFACE

This document contains the system design information about Music Recommendation System.

This document is prepared according to the “IEEE Standard for Information Technology –

Systems Design – Software Design Descriptions – IEEE Std 1016 – 2009”.

This Software Design Documentation provides a complete description of all the system design

and views of the project.

The first section of this document includes Project Identification, Audience Identification and

requirements, Composition of the developers’ team. The following sections include document

purpose and design viewpoints of the system.

3

TABLE OF CONTENTS

1. Overview .. 5

1.1 Scope ... 5

1.2 Purpose .. 5

1.3 Intended audience .. 5

1.4 References ... 5

2. Definitions... 6

3. Conceptual Model For Software Design Descriptions .. 6

3.1 Software Design In Context ... 6

3.2 Software Design Descriptions Within Life Cycle ... 7

3.2.1 Influences on SDD Preparation ... 7

3.2.2 Influences on Software Life Cycle Products .. 7

3.2.3 Design Verification and Design Role In Validation ... 7

4. Design Description Information Content .. 7

4.1 Introduction ... 7

4.2 SDD Identification ... 8

4.3 Design Stakeholders and Their Concerns ... 8

4.4 Design Views .. 8

4.5 Design Viewpoints ... 9

4.6 Design Elements .. 9

4.7 Design Rationale.. 9

4.8 Design Languages .. 10

5. Design Viewpoints .. 10

5.1 Introduction ... 10

5.2 Context Viewpoint ... 10

5.2.1 User Use Cases ... 11

5.2.1 Supplier Use Cases .. 11

5.2.1 General Use Cases .. 11

5.3 Composition Viewpoint ... 13

5.4 Logical Viewpoint ... 14

4

5.4.1 User Class ... 14

5.4.9 Performer Class .. 20

This class is used to keep the performer information. ... 20

5.4.10 Relationships between Classes .. 21

5.5 Dependency Viewpoint .. 22

5.6 State Dynamics Viewpoint ... 24

6. Conclusion .. 24

7. Forthcoming Period Planning & Distribution of the Roles . .. 24

5

1. Overview

This document is composed of five sections to state the detailed design of the project.

The first section is an overview to document. The second section gives some definitions of the

system. In the third part conceptual model for software design descriptions will be given. Fourth

part includes the design description information content. Finally, in the fifth part design

viewpoints will be explained.

1.1 Scope

This document contains complete description of the design of the Music Recommendation

System. It consists of class diagrams, association of the classes, sequence diagram to show work

flow of the some critical parts of the system, deployment diagram to show physical parts of the

system. The design views incorporated are explained in depth and justified for use within this

document.

1.2 Purpose

This software design document aims to provide information about the design details of

Recommendation System Project. To show the different parts of the system from different

viewpoints, component diagram, use case diagram , class diagram, deployment diagram are used.

This document will show how the system is composed from. While showing bottom level of

elements of the system, document will show their construction purpose, and different kind of

static relationship that exist among them. In addition, interaction of the different types of users

will be included by describing the properties of the related user interface and showing

representative screenshots of the interface.

The document presents a number of different design views to depict different aspects of the

system. It is intended to capture and convey the significant design decisions which have been

made on the system.

1.3 Intended audience

This document is intended for both the stakeholders and the developers who build the system.

1.4 References

● IEEE. IEEE Std 1016-2009 IEEE Standard for Information Technology – System Design

– Software Design Descriptions. IEEE Computer Society, 2009.

6

2. Definitions

SDD Software Design Document

Neo4j Neo4j is a robust transactional property graph database.

Java Java is a computer programming language that is concurrent,

class-based, object-oriented, and specifically designed to have

as few implementation dependencies as possible.

Cypher Cypher is a Graph Query Language.

Windows Windows is a series of graphical interface operating systems

developed, marketed, and sold by Microsoft.

Apache Mahout Apache Mahout is a project of the Apache Software Foundation

to produce free implementations of distributed or otherwise

scalable machine learning algorithms focused primarily in the

areas of collaborative filtering, clustering and classification.

Eclipse A multi-language Integrated development environment (IDE).

GUI Graphical User Interface

SRS Software Requirements Specification

3. Conceptual Model For Software Design Descriptions

To understand this document better as a developer, basic knowledge of database management is

needed.

3.1 Software Design In Context

This project will be designed using graph database features and object oriented approach. In this

structure, the system can work more efficient with respect to recommendation relevancy.

http://en.wikipedia.org/wiki/Apache_Software_Foundation
http://en.wikipedia.org/wiki/Integrated_development_environment

7

According to creation of data, the system can be used for different items different from music.

Adaptability is very important for the project.

3.2 Software Design Descriptions Within Life Cycle

3.2.1 Influences on SDD Preparation

The key software life cycle product that drives a software design is typically the software

requirements specification. The requirements in the SRS (product perspective, functional and

non-functional requirements and interface requirements) and also the demands of the

stakeholders will specify the design of the project and design constraints to be considered or

observed.

3.2.2 Influences on Software Life Cycle Products

The SDD affects several major software life cycle work products’ contents. Design decisions, or

design constraints observed during the preparation of the SDD, can cause some changes in

requirements. One method of recording the relationship between requirements and design is to

maintain traceability between these two. SDD can also affect test plans of the project. The

content of the SDD can be taken into consideration by the development of test cases and test

procedure.

3.2.3 Design Verification and Design Role In Validation

Verification and validation will be tested after preparation of the test cases. All system parts will

be tested against these cases. It will be checked for whether the requirements are fulfilled or not.

4. Design Description Information Content

4.1 Introduction

Software Design Description of Music Recommendation System identifies how this system will

be designed and implemented. Music Recommendation System will be designed in graph

database features and object oriented approach. Java programming language will be used in

object oriented approach. Neo4j graph database will be used to represent and store data. Also a

qualified interface will be designed. Graph database is known for its time efficiency. To perform

8

algorithm to make recommendation, we will study on objects’ attributes. Therefore, that’s the

reason we use graph database and object oriented approach.

4.2 SDD Identification

After testing for the verification and validation, Music Recommendation System can be used for

its original data that comes from ArgeDor. This system can be used for music recommendation

using different data sources or some other suitable kind of recommendation in a different context

in the future.

4.3 Design Stakeholders and Their Concerns

The music recommender system’s stakeholders are the companies that serve music to listeners

through an online system. Stakeholder’s possible concerns are accuracy and efficiency in matters

of memory and time. Put differently, the recommender engine perceive user’s inputs from it’s

stakeholder and return multiple outputs that should be useful for the user. Moreover, because of

huge amount of input data, the recommender is expected to manage this data properly and

produce recommendations swiftly.

4.4 Design Views

This project will be implemented as modular structure. It is useful for stakeholders, because they

can add new features or remove the modules they do not need from the project. Object-oriented

approach is also necessary, because we will be dealing with data that have some attributes as

objects. Moreover, this project is mainly focusing on database management. Therefore, object-

oriented design is necessary. The recommendation engine will be working on the background.

When a user enters to his/her account, he/she will not aware of the system working to make a

recommendation. Recommendations will be displayed, while the user is performing different

actions in his/her account. Then, after some time, if the user does not select any of recommended

musics, the engine will generate new recommendations. By this way, user can get more

recommendation and system can notice user’s favors more accurately. This view shows the flow

of staffing that will be made to make the system work. Content of the recommendation system is

specified and requirements are given in the SRS document. Team organization and scheduling

are also made. In the following sections a logical view of the product is explained and also is

supported by diagrams. Class diagrams are given to show the relationships between objects.

9

Dependency views show possible future problems and show the storage of the information.

Interface views clearly specify which inputs give what outputs.

4.5 Design Viewpoints

The Context viewpoint shows the expectations from the user by giving reference to an

explicit context. That explicit context defined is actually specified by reference to users and

stakeholders. The roles of the users and stakeholders are defined clearly. The relationship

between the input and the output will be explained in context viewpoint-design section. In the

Composition viewpoint the relationships between components of the system are explained.

Specifications and assignments of work packages are indicated. This viewpoint can be used for

estimating cost, staffing, and schedule for the development effort. Logical viewpoint shows the

class structure, interaction between classes, design and implementation of classes, and

relationship between classes and interfaces. In Dependency viewpoint, the subsystem of the

system and interconnections between these subsystems are defined.

4.6 Design Elements

In this part of the document, technical tools are explained. As database, Neo4j will be used. It

has several advantages over other databases. It is cost efficient in terms of time and make it

easier to construct relationships between system elements. These make Neo4j useful for

recommendation systems. Moreover, to raise accuracy the algorithm needs to reach an item from

different relations. For this purpose, using graph database will be more logical for the project.

There will not be any foreseen library in the system. Developers will design and implement

background of the recommender from scratch.

In the Design Viewpoint part, detailed explanation about components, subsystems and modules

will be provided.

4.7 Design Rationale

By taking into consideration some important features such as performance, maintainability,

generalizability of the system, we agreed on how we will design the project. The Music

Recommendation system should be generic to use the recommendation idea for other items

different from music. We will write our code in an easily understandable way by adding

10

comments. So, it will be easy to understand which function is doing what. This will also

facilitate to modify the code according to stakeholders’ demands.

4.8 Design Languages

We chose UML to represent schemes and modeling techniques to develop, analyze, and

document the system design. We also used the built-in visualization feature of Neo4j to show the

data structure of the graph database.

5. Design Viewpoints

5.1 Introduction

In this part of the document 5 main design viewpoints will be explained in detail:

● Context Viewpoint

● Composition Viewpoint

● Logical Viewpoint

● Dependency Viewpoint

● State Dynamics Viewpoint

All of these viewpoints are explained with supported UML diagrams.

5.2 Context Viewpoint

The purpose of the Context Viewpoint of Music Recommendation System is depicting the

services provided by the system. We can look at utilities that the system provides from both side,

user and stakeholder.

Provided functionalities to user are mainly divided into two categories. First category is user

authentication category. This category is not directly associated with the recommendation.

However, it is associated with the time that recommendation system should work. The second

category is selecting an item that is music. This functionality provides data that can be used for

future recommendations.

Provided functionalities for stakeholders or in other words suppliers are also divided into two

categories. The first one is data management use cases that provide modifying data. The second

one enables the supplier to modify recommendation algorithm. Context is defined by reference to

11

the actors who will interact with the system. That is users and stakeholders based context is

defined.

5.2.1 User Use Cases

Figure 1: User Use Cases

5.2.1 Supplier Use Cases

Figure 2: Stakeholder Use Cases

5.2.1 General Use Cases

The use cases were explained in SRS document. However, here they are indicated simpler than

the ones in SRS document. If necessary to look at the use cases briefly, we can look at the list

below.

● Login: User can login to his/her account by this function. This makes the

recommendation system work.

12

● Logout: User can logout to his/her account by this function. This makes the

recommendation system stop working.

● Select Item: User selects an item, here it is music, then it sends the data about music to

the database.

● Close Item: User closes a recommended item by this method. This function makes the

recommendation system work to create new recommendation instead of the closed one.

● Manage Data Sources: This function provides the ability to erase or add new data, such

as new music, into database and also to alter the remaining data.

● View User Actions: By this function, supplier can see the user’s actions. This makes the

supplier sure that the recommendation system works fine.

● Modify Recommendation Algorithm: A stakeholder who does not recommend music or

recommends different type of data can use this method. For example, supplier may want

to do the recommendation according to different attribute of some data. On the other

hand, supplier may want to test the recommendation system.

Figure 3: General Use Cases

13

5.3 Composition Viewpoint

The purpose of the composition viewpoint of Recommendation System is to define the system as

a composition of it’s subsystems. The project is formed by 4 main submodules: Database,

Recommender, Evaluation and End User GUI. Detailed explanation about the relations between

these modules is given below:

- “Recommender module”, while calculating the accurate recommendation, uses the data stored

in “Database module” via Neo4j api.

- Recommender module executes the methods on background and by connecting to the GUI

module, via RecommendationRetrieving interface, the resulting recommendations is shown to

the user. Thus, “recommendation module” is directly connected with “GUI module”

simultaneously.

- Recommendation system has also its own “evaluator module” inside, thus “recommender

module” of the project also is connected to evaluator module by EvaluationRecommendation

interface. This interface of evaluator module gets its input data from the already given

recommendations of the recommender module. Evaluator module specify the quality of the

recommendations of recommender module with respect to decided criterias such as accuracy and

speed of the recommendation.

- Finally, since the evaluator module’s outputs affect the resulting recommendation shown on

GUI, the “GUI” and the “Evaluator modules” are also connected indirectly.

 Figure 4: Component Diagram

14

All modules of the system and their internal relations will be explained clearly in the

Dependency Viewpoint. Also deployment of these modules is explained in the below diagram:

Figure 5: Component Diagram

5.4 Logical Viewpoint

In this viewpoint, the classes that will be used in the project are explained with their attributes

and methods. For each class, there will be a diagram to overview the class and then a table that

name, return type, visibility of the class diagram are shown in. Also, definition of each class

element is provided. After all classes are explained, the class diagram that shows relationships

between the classes are drawn.

This project is based on the data that is provided by ArGeDor. Therefore, in this part of the

document, the data that will be used during implementation and test processes is explained also.

The recommendation system includes 9 classes; User, Song, Album, Recommender,

ItemSimilarity, UserSimilarity,TopItems, RecommendedItems and Performer classes.

5.4.1 User Class

This class is used to keep user’s information.

15

Diagram

Figure 6: User Class Diagram

Definitions

Name Type/Return

Value Type

Visibility Definition

userID int private This variable defines unique ID for each

user

loginDate date public This variable defines listening date of song

loginTime time public This variable defines listening time of

song

getUserID() userID public This function is used to get IDs of user

which is a private variable

5.4.2 Song Class

This class is used to keep song information.

Diagram:

Figure 7: Song Class Diagram

16

Definitions:

Name Type/Return Value

Type

Visibility Definition

songID int public This variable defines unique ID for each

user

providerID int public This variable defines unique ID for each

provider

genreID int public This variable defines unique ID for each

genre

createTime time public This variable defines the time that data

is created

name string public This variable defines name of the song

5.4.3 Album Class

This class is used to keep album information.

Diagram:

Figure 8: Album Class Diagram

Definitions:

Name Type/Return Value

Type

Visibility Definition

albumID int public This variable defines unique ID for

album

17

providerID int public This variable defines unique ID for

provider

createTime time public This variable defines album’s creating

time

albumName string public This variable defines name of album

5.4.4 Recommender Class

This class is used to implement recommender algorithm. It connect users to items.

Diagram:

Figure 9: Recommender Class Diagram

Definitions:

Name Type/Return Value

Type

Visibilit

y

Definition

howMany int public This variable defines desired number of

recommendations

recommend(

)

List<RecommendedItem

>

public This function is used to get list of

recommended items.

5.4.5 ItemSimilarity Class

This class is used to compare two items and determine whether they are similar.

18

Diagram:

Figure 10: ItemSimilarity Class Diagram

Definitions:

Name Type/Return Value

Type

Visibility Definition

itemID1 int public This variable defines the unique ID

for item

itemID2 int public This variable defines the unique ID

for item

itemSimilarity() double public This function is used to get similarity

between itemD1 and other items

itemSimilarities(

)

List<int> public This function is used to get IDs of all

similar items

5.4.6 UserSimilarity Class

This class is used to compare two users and determine whether they are similar.

Diagram:

Figure 11: UserSimilarity Class Diagram

19

Definitions:

Name Type/Return Value

Type

Visibility Definition

similarityLevel int public This variable defines similarity level

between users

userSimilarity(

)

double public This function is used to get similarity

between two users

5.4.7 TopItems Class

This class is used to specify most listened songs.

Diagram:

Figure 12: TopItems Class Diagram

Definitions:

Name Type/Return

Value Type

Visibility Definition

getTopItems() List<Song> public This function is used to get most popular

items among users

5.4.8 RecommendedItem Class

This class is used to determine items that can be listened by a specific user.

20

Diagram:

Figure 13: RecommendedItem Class Diagram

Definitions:

Name Type/Return Value

Type

Visibility Definition

getRecommendedItem() List<RecommendedItem

>

public This function returns IDs of

recommended items

5.4.9 Performer Class

This class is used to keep the performer information.

Diagram:

Figure 14: Performer Class Diagram

Definitions:

Name Type/Return Value

Type

Visibility Definition

performerID int public This variable defines unique ID for each

performer

providerID int public This variable defines unique ID for each

provider

21

name string public This variable defines name of the

performer

5.4.10 Relationships between Classes

All these relationship are shown on Class Diagram in the Figure 13.

Figure 15: Relationships between classes

5.4.11 Data Structure in Graph Database

The structure of the data is shown here as it is stored in the graph database, including both nodes

and relationships between them. The nodes User,Song,Album and Performer represent the

corresponding classes that are shown on sections 5.4.1 , 5.4.2 , 5.4.3 and 5.4.9. They possess all

the attributes that are explained in those sections also in the graph database, but the attributes are

not shown in the visual.

22

Diagram:

Figure 16: Property Graph Model

Definitions of the Relations:

Name Type Definition

BELONGS_TO Relation This relationship defines a relation between an

“Album” node and a “Performer” node.

IS_IN Relation This relationship defines a relation between a “Song”

node and an “Album” node.

LISTENED_TO Relation This relationship defines a relation between a “User”

node and a “Song” node.

5.5 Dependency Viewpoint

In dependency viewpoint, the modules that will be used in the project are explained with their

submodules. For each module, there will be detailed explanation.

5.5.1 Recommendation Module

This module is the basic module of the project. It gathers data from Neo4j database and process

the data via recommendation algorithms in it. Considering the data that is given by ArgeDor,

only item based and user based recommendations can be performed.

23

5.5.2 Evaluation Module

As stated before, the concern of the project is to provide accurate recommendations to users.

Accuracy will be our base point. Therefore, while evaluating the system, to get accurate

recommendations is crucial for the project. How to evaluate the recommendation system in

manner of accuracy? This is the question that will be answered in this section.

Data that is provided by ArgeDor will be divided into 2 part. First part, training data, is 10% of

total the data. Accuracy of recommendations produced by training data is known. Second part

includes 90% of the data. According to the known result of first part of the data, results from the

second part will be evaluated.

5.5.3 Database Module

The Database Module is the module that all the data of the software will be kept. It will be

containing a graph database (neo4j) and is highly interconnected with the Recommendation

Module. It will be mainly accessed and used by the Recommendation Module. Recommendation

Module will send queries to this module. The queries will be run and generated results will be

provided to the Recommendation Module.

5.5.4 User Interface Module (GUI)

The GUI part is not intended to design for end users. The purpose is to show the results of the

recommender system to the stakeholder. Also, GUI part will be connected to the evaluation part.

Stakeholders will see the expected results and the results produced by the recommendation

systems via GUI. To clarify this point, follow the figure below:

Figure 17: GUI

24

After enter a valid user ID, press the button. In the ‘Expected results’ section, top 10 songs that

estimated by training data will appear. In the ‘Results by recommender’ area, estimation of top 5

songs that produced by recommender will be appear. ‘Accuracy Level’ indicates how much

‘Results by recommender’ close to ‘expected results’. It will be computed at the background.

5.6 State Dynamics Viewpoint

Figure18: State Machine Diagram

This diagram shows how the system works after a user logs in his/her account. Start

recommendation is not actually done by the user, but login leads to start recommendation. Then,

recommendations are shown on the user interface. User can select one of them or close some of

them. All these also cause to restart the system to fill the blank item space. Whole flow of these

states stop, when user logs out.

6. Conclusion

Implementation details of Music Recommendation System are provided into some extent in this

document. Modules, data structure, design viewpoints are defined clearly. The tools and the

stages of the design are also given. The first prototype of the Recommendation System will be

developed by referring to this document.

25

7. Forthcoming Period Planning & Distribution of the Roles

Asena Ok: Recommender, Evaluator Module

Aybüke Taşdirek: Recommender, Evaluator Module

Birant Altinel: Database Module, User Interface Module

Nihal Tarkan: Database Module, User Interface Module

Gantt Chart of Ceng History X: (Tentative)

Task Name December January February March April May

Project

Planning

Update

 1 week

Learning and

Improvement

 2 weeks

Learning Tools 1 week

Design 3 weeks

Algorithms 1 week 3 weeks

Coding &

Database

Designing

 1 week 4 weeks 4 weeks

Testing 2 weeks

