
Cognitive State Representation and
Visualization of Human Brain

Software Design Document
v1.1

Simple Labs

Atakan KAYA, 1746114

Barış NASIR, 1746288

Özlem Ceren ŞAHİN, 1746668

Bahattin TOZYILMAZ, 1746395

December 29, 2013

METU, DEPARTMENT OF COMPUTER ENGINEERING

PREFACE

This document contains the software design details for the “Cognitive State Representa-
tion and Visualization of Human Brain” software. The document is prepared according to
the “IEEE Standard for Information Technology – Systems Design – Software Design Descrip-
tions – IEEE STD 1016 – 2009”. This Software Design Documentation provides a complete
description of all the system design and views of the “Cognitive State Representation and
Visualization of Human Brain”.

Simple Labs 2 of 31

METU, DEPARTMENT OF COMPUTER ENGINEERING

Revision History

Version Date Sections
Changed, Added,
Deleted

Type
of the
Change

Brief description

1.0 01.12.2013 - A Initial version
1.1 29.12.2013 5.3.1 D Language change
1.1 29.12.2013 5.3.* M Language change
1.1 29.12.2013 6 A -

*A: Added, M: Modified, D: Deleted

Simple Labs 3 of 31

METU, DEPARTMENT OF COMPUTER ENGINEERING Contents

CONTENTS

1 Overview 6
1.1 Scope . 6
1.2 Purpose . 6
1.3 Intended Audience . 7
1.4 References . 7

2 Definitions 8

3 Conceptual Model For Software Design Descriptions 9
3.1 Software Design In Context . 9
3.2 Software Design Descriptions Within The Life Cycle 9

3.2.1 Influences on SDD Preparation . 9
3.2.2 Influences on Software Life Cycle Products 9
3.2.3 Design Verification and Design Role in Validation 10

4 Design Description Information Content 11
4.1 Introduction . 11
4.2 SDD Identification . 11
4.3 Design Stakeholders and Their Concerns . 11
4.4 Design Views . 12
4.5 Design Viewpoints . 12
4.6 Design Rationale . 12
4.7 Design Languages . 13

5 Design Viewpoints 14
5.1 Introduction . 14
5.2 Context Viewpoint . 14

5.2.1 Design Concerns . 15
5.2.2 Design Elements . 15
5.2.3 Example Languages . 16

5.3 Logical Viewpoint . 16
5.3.1 Packet Class . 17
5.3.2 Processor Interface . 18
5.3.3 Pipeline Class . 18
5.3.4 ProcessorManager Class . 19

5.4 Dependency Viewpoint . 20
5.5 Patterns Use Viewpoint . 22
5.6 Interface Viewpoint . 24
5.7 Interaction Viewpoint . 28

5.7.1 Loading data . 28
5.7.2 Applying processors . 28
5.7.3 Creating pipelines . 29

Simple Labs 4 of 31

METU, DEPARTMENT OF COMPUTER ENGINEERING Contents

5.8 Algorithm Viewpoint . 29
5.8.1 Spatial Minimization Algorithms . 30
5.8.2 Functional Minimization Algorithms . 30

6 Time Planning 31

Simple Labs 5 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 1 OVERVIEW

1 OVERVIEW

1.1 SCOPE

The software to be produced is “Cognitive State Representation and Visualization of
Human Brain”. In this project it is aimed to connect different simulation, computer graphics
and image processing technologies. At the end of the project, a software enhancing the graph
structure (by simplifying it with down sampling and quantization) will be implemented in
Unity3D game engine. To visualize our work and make the software more attractive, the
project is designed to include some extra features like zoom in/out, rotation, showing brain
parts seperately.

Initially, the project was planned to be fully implemented with OpenGL. However, after
meeting with the customer and our supervisor, we decided to use a game engine to imple-
ment visual part of the project. After doing some researches we decided to use Unity3D
game engine.

Unity3D game engine is selected for this project because it includes occlusion culling
feature that renders only what can be seen, level of detail support and build size stripping.
Also, it supports DirectX 11, shader model 5.0 and OpenGL.

1.2 PURPOSE

This document describes how “Cognitive State Representation and Visualization of
Human Brain” will be structured to satisfy the requirements identified in the Software Re-
quirements Specification document prepared by Simple Labs. Team in their senior software
project. It includes modifications over initial design document.

Requirements Specification document determines software, hardware, functional and
nonfunctional requirements decided to be satisfied and gives a general idea how the system
will work. This document covers the details and different aspects of the project in a compre-
hensive way and conceptualizes the overall product that will be formed accurately.

In the design process, it is intended to design an effective and modular product that will
satisfy the needs and constraints of the project. It is also aimed to explain the functional,
structural and behavioral features of the system by using specific types of UML diagrams
such as class, sequence, state diagrams. In order to support these diagrams, graphical user
interface prototypes are also provided in the document.

Simple Labs 6 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 1 OVERVIEW

1.3 INTENDED AUDIENCE

This document is intended for both the stakeholders and the developers who build the
system.

1.4 REFERENCES

1. IEEE. IEEE Std 1016-2009 IEEE Standard for Information Technology – System Design
– Software Design Descriptions. IEEE Computer Society, 2009.

2. StarUML 5.0 User Guide. http://staruml.sourceforge.net/docs/user-guide(en)
/toc.html

Simple Labs 7 of 31

http://staruml.sourceforge.net/docs/user-guide(en)/toc.html
http://staruml.sourceforge.net/docs/user-guide(en)/toc.html

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 2 DEFINITIONS

2 DEFINITIONS

3D 3 Dimensional
API Application Programming Interface
FC Functional Connectivity
fMRI functional Magnetic Resonance Imaging
OpenGL Open Graphics Library
GLU OpenGL Utility Library
GLUT OpenGL Utility Toolkit
GPU Graphichs Processing Unit
IEEE Institute of Electrical and Electronics Engineers
METU Middle East Technical University
MVPA MultiVoxel Pattern Analysis
POD Plain Old Data
RAM Random Access Memory
RTTI Run-Time Type Information
SDD Software Design Description
SRS Software Requirements Specification
UML Unified Modeling Language

Simple Labs 8 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING3 CONCEPTUAL MODEL FOR SOFTWARE DESIGN DESCRIPTIONS

3 CONCEPTUAL MODEL FOR SOFTWARE DESIGN

DESCRIPTIONS

3.1 SOFTWARE DESIGN IN CONTEXT

The aim of this project is visualizing the fMRI data on a 3D graph to increase the under-
standability of the complex data. The fMRI data includes the brain response of a human in
response to some particular circumstances as showing the picture of a red apple.

The main role of the final 3D graph will be visualizing voxels and edges which show the
related voxels. Besides graph may include a brain image as background and five main lobes
of the brain, which are frontal, parietal, occipital, limbic, temporal lobes, in different colors.

Since the fMRI data is very large and complex, time and space will be main constraints.

The target audience of this project is mostly academicians and medical institutes. Cog-
nitive state representaion and visualization of human brain is fundamentally important in
neuroanatomy, neurodevelopment, cognitive neuroscience and neuropsychology.

This project will be implemented in Unity3D Game Engine with using its OpenGL libraries.
C # will be used as the programming language.

3.2 SOFTWARE DESIGN DESCRIPTIONS WITHIN THE LIFE CYCLE

3.2.1 INFLUENCES ON SDD PREPARATION

The key software life cycle product that drives a software design is typically the software
requirements specification.

The requirements in the SRS like product perspective,interface requirements, functional
and non-functional requirements and also the demands of the stakeholders specify the
design of the project.

3.2.2 INFLUENCES ON SOFTWARE LIFE CYCLE PRODUCTS

As said before, the key software life cycle product that drives a software design is typically
the software requirements specification. However during the preparation of this Software
Design Description document or the implementation stage of the project, some require-
ments may change and this results in the change of SRS and SDD.

Simple Labs 9 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING3 CONCEPTUAL MODEL FOR SOFTWARE DESIGN DESCRIPTIONS

Besides, SDD influences test plans and test documentation of the Cognitive State Repre-
sentation and Visualization of Human Brain project.

3.2.3 DESIGN VERIFICATION AND DESIGN ROLE IN VALIDATION

Verification and validation will be tested after preparation of the test cases. All system
parts will be tested against these cases. It will be checked for whether the requirements are
fulfilled or not.

Simple Labs 10 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING4 DESIGN DESCRIPTION INFORMATION CONTENT

4 DESIGN DESCRIPTION INFORMATION CONTENT

4.1 INTRODUCTION

This is an SDD document for Cognitive State Representation and Visalization of Human
Brain project. Through the document, detailed design cases are explained and depicted
using UML diagrams.

4.2 SDD IDENTIFICATION

This Software Design Document is written on the request of Ceng 491 instructors to be
able to guide the development process of Cognitive State Representation and Visalization of
Human Brain. It is written by Simple Labs team collaboratively. Below table presents the
authorships of sections.

Section Author
1.* Barış Nasır
2.* Barış Nasır
3.* Özlem Ceren Şahin
4.* Atakan Kaya
5.1 Bahattin Tozyılmaz
5.2 Atakan Kaya
5.3 Bahattin Tozyılmaz, Barış Nasır, Özlem Ceren Şahin, Atakan Kaya
5.4 Özlem Ceren Şahin
5.5 Barış Nasır
5.6 Atakan Kaya
5.7 Bahattin Tozyılmaz
5.8 Bahattin Tozyılmaz, Barış Nasır

The date of issue of the initial version of this document is December 29, 2013.

4.3 DESIGN STAKEHOLDERS AND THEIR CONCERNS

The design stakeholders for our project are Prof. Dr. Fatoş Yarman Vural and her research
group. Our project is shaped by their research and requirements.

The major concerns of design stakeholders can be listed as:

• They want to observe brain using this tool.

• They want the edge size to be reduced and a smooth 3D image to be rendered.

Simple Labs 11 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING4 DESIGN DESCRIPTION INFORMATION CONTENT

• They want the project to be completed in time.

• They want to be kept informed about the process.

4.4 DESIGN VIEWS

Our project has emerged from a need of an efficient, simple and smooth drawing of brain
data. To achieve this, filtering techniques are required. And since the filtering techniques are
under research and development phase by the Image Processing Laboratory of METU, an
object-oriented and an easily extendable approach is preferred. To point this, a contextual
view that determines the services required, a logical view that draws the relations between
basic entities, a dependency view and a patterns use view that defines the relation between
subsystems, an interface view that gives insight about how the end product will be, an
interaction view that depicts the flow of information and an algorithm view that focuses on
the algorithms used is required.

4.5 DESIGN VIEWPOINTS

In this document, the contextual viewpoint focuses on the services by use case diagrams
to define the usage of features by the actors. Then, a logical viewpoint defines the classes
and the relationships between them. In the dependency viewpoint, the relationships of
interconnections and access among entities are specified. Later, patterns use viewpoint
depicts how subsystems of the project are connected. In the interface viewpoint the relations
of the UI modules and a mockup visualization is provided. Then, interaction viewpoint
explains the interactions between several objects of the project. Finally, algorithm viewpoint
defines the required algorithms throughout the project.

4.6 DESIGN RATIONALE

In this document, design features are chosen to improve reusability and provide exten-
sibility. This is vital since the related projects at Image Processing Laboratory are under
development, the reqirements for them can change.

Simple Labs 12 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING4 DESIGN DESCRIPTION INFORMATION CONTENT

4.7 DESIGN LANGUAGES

Throughout the document, UML use case diagrams, UML component diagrams, UML
class diagrams, UML sequence diagrams and ER diagrams are used.

Simple Labs 13 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 5 DESIGN VIEWPOINTS

5 DESIGN VIEWPOINTS

5.1 INTRODUCTION

In this part, seven main design viewpoints will be explained.

• Context Viewpoint

• Logical Viewpoint

• Dependency Viewpoint

• Patterns Use Viewpoint

• Interface Viewpoint

• Interaction Viewpoint

• Algorithm Viewpoint

During the explanation of these viewpoints, UML diagrams will be used to increase un-
derstandability.

5.2 CONTEXT VIEWPOINT

This section of Software Design Description focuses on the services provided. The context
is defined by reference to actors.

Simple Labs 14 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 5 DESIGN VIEWPOINTS

Cognitive State Representation and Visualization of Human Brain
Cognitive State Representation and Visualization of Human Brain

Load File

Zoom In and Out

Rotate

Four Regions

Show Side-by-Side

Configure Colors

Transparency Adjustment

Change Voxel Size

Layer Depth Adjustment

user

5.2.1 DESIGN CONCERNS

The use cases provided in this section depicts the offered services for the actor.

5.2.2 DESIGN ELEMENTS

Actors

• User: The user that uses the program

Simple Labs 15 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 5 DESIGN VIEWPOINTS

Services

• Load File: The user loads the data taken from fMRI machine.

• Zoom In and Out: The user can zoom in and zoom out to 3D image of the brain.

• Rotation: The user can rotate the image 360 degree around it’s center to any direction.

• Four Regions: The user can do selection between four brain lobes. Only the selected
lobes will be visible.

• Show Side-by-Side: With this feature, the user can see the brain from different sides in
one window.

• Configure Colors: Changes color distribution for color blinds.

• Transparency Adjustment: Changes transparentcy of the voxels so deeper layers can
be seen.

• Change Voxel Size: Changes unit size of voxels in case size is miscalulated.

• Layer Depth Adjustment: Allows user to view inner layers of brain.

5.2.3 EXAMPLE LANGUAGES

In this section, UML Use Case Diagrams are used.

5.3 LOGICAL VIEWPOINT

This section of the Software Design Document focuses on logical foundations of the
project. The logical foundations of the project are the classes and relations between them.
In this section, those classes, their methods and interactions will be explained in detail.

Extensibility is a must for the project. Since this project will be used in a highly active
research area, it is essential that novel ideas be implemented easily. Project team aims to
achieve this with a highly algorithm and data agnostic approach.

Simple Labs 16 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 5 DESIGN VIEWPOINTS

5.3.1 PACKET CLASS

This class is used as an immediate data format between two Processors. Packet class
encapsulates all data needed by Processors: voxel coordinates, edge values, etc... It also
offers a way to pass named extra data between Processors.

Packet

– voxelCoordinates : double[][3]
– edges : double[][] – extras : Dictionary<string,Object>

+ Packet() : constructor
+ Packet(d : Packet) : constructor
+ SetExtra<T>(name: string, data: T) : T
+ GetExtra<T>(name: string, data: T) : bool
+ operator[](name: string) : Object
+ GetEdges(n: int) : double[][]
+ SetEdges(data: double[][]) : double[][]
+ GetCoords(n: int) : double[][3]
+ SetCoords(data: double[][3]) : double[][3]

Name Returns Visibility Description
voxelCoordinates double[][3] Private This member holds coordi-

nates of voxels
edges double[][] Private This member holds edge ma-

trix
extras Dictionary<string,

Object>
Private Named collection of extra

datas
Packet() «constructor» Public Dummy constructor
Packet(d: Packet) «constructor» Public Copy constructor
SetExtra<T>(name: string,
data: T)

T Public Sets an extra with the given
name and content

GetExtra<T>(name:
string, data: T)

bool Public Gets the extra with the given
name or returns false

operator[](name: string) Object Public Shorthand for getting and
setting extras

GetEdges(n: int) double[][] Public Gets the edge matrix
SetEdges(data: double[][]) double[][] Public Sets the edge matrix
GetCoords(n: int) double[][3] Public Gets voxel coordinates
SetCoords(data: dou-
ble[][3])

double[][3] Public Sets voxel coordinates

Simple Labs 17 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 5 DESIGN VIEWPOINTS

5.3.2 PROCESSOR INTERFACE

This interface defines outlines of Processors and how Processors should be implemented.

«interface»
Processor

+ Processor() : constructor
+ Processor(arg: string[]) : constructor
+ FromArray(arg: string[]) : void
+ Process(input : Packet) : Packet
+ GetType() : string
+ GetName() : string
+ GetInfo() : string

Name Returns Visibility Description
Processor() «constructor» Public Dummy constructor
Processor(arg: string[]) «constructor» Public This should be the constructor

called from other places
FromArray(arg:
string[])

void Public Sets properties of the Processor

Process(input: Packet) Packet Public The real job is done here
GetType() string Public Returns "sink", "process" or "in-

put"
GetName() string Public Returns internal name for the Pro-

cessor
GetInfo() string Public Returns a simple documentation

5.3.3 PIPELINE CLASS

This class is responsible for chaining Processor operations. A pipeline is an object that
the user can save to or load from it a file. Thus, it also enables the user to create his/her own
presets. When a Processor is added to the Pipeline, Pipeline object checks whether it is the
first Processor to be added, and if it is, is it an input type Processor.

Simple Labs 18 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 5 DESIGN VIEWPOINTS

Pipeline

– processors: Processor[]

+ Pipeline() : constructor
+ Pipeline(rhs: Pipeline) : constructor
+ FromArray(arg: string[]) : void
+ ToArray() : string[]
+ AddProcessor(pr: Processor) : bool
+ Run() : Packet

Name Returns Visibility Description
processors Processor[] Private This is the list of Processors this

Pipeline consists of
Pipeline() «constructor» Public Dummy constructor
Pipeline(rhs: Pipeline) «constructor» Public Copy constructor
FromArray(arg:
string[])

void Public Constructs "processors" with given
information

ToArray() string[] Public Saves "processors" list so that it can
be loaded with FromArray

AddProcessor(pr: Pro-
cessor)

bool Public Adds a Processor to the list. First
Processor on the list should be in-
put type

Run() Packet Public Runs generated Processor se-
quence, returns output of last
Processor

5.3.4 PROCESSORMANAGER CLASS

This class is responsible for managing Processor selection and generation. This is a static
class and it’s members are all static. Each Processor must register itself with the Processor-
Manager. C++ doesn’t allow static constructors, which would be used when registering. This
is a problem the team is working on.

Simple Labs 19 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 5 DESIGN VIEWPOINTS

«static»
ProcessorManager

– processors: Processor[]

+ ProcessorManager() : constructor
+ Register(p :Processor) : void
+ FromArray(arg: string[]) : void
+ GetReader(fn: string, h: Handle) : Processor

Name Returns Visibility Description
processors Processor[] Private This is the list of registered Proces-

sors
ProcessManager() «constructor» Public Static constructor
Register(p: Processor) void Public Registers p with ProcessManager
FromArray(arg:
string[])

void Public Constructs a Processor with given
information

GetReader(fn: string, h:
Handle)

Processor Public Finds the input Processor that can
read given source

5.4 DEPENDENCY VIEWPOINT

In this section of the design document, the relationships of interconnections and access
among entities are specified. These relationships include information sharing, order of
execution and parameterization of interfaces.

ER diagram below shows the entities and their relationships. They are also explained in
the subsections of this section.

Simple Labs 20 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 5 DESIGN VIEWPOINTS

Input

Requires

LoadFileProduces Produces

ProducesProcessorManagerProcessors

Provides

Processor

Packet

PipeLine Requires and Provides

RequiresRequires

Requires and Provides

Processors

Requires

Visualization

Dependency viewpoint provides an overall picture of the system entities and their rela-
tionships in order to assess the impact of requirements and design changes. This section
helps maintainers in two ways: System failures or resource bottlenecks can be resolved
by identifying the entities which causes them and development plan can be prepared by
identifying which entities are needed by other entities and which should be developed first.

There are seven design entities which are Input, Box, Packet, Processor, ProcessorManager,
LoadFile and Pipeline.

There are four design relationships, namely uses,requires, provides, produces.

• requires: In the main loadFile requires input from the user, Pipeline requires Packet of
preprocessed input data and one or more Processors to process Packet.

• provides: Pipeline provides Packet at the end of its process and ProcessorManager
generates processors and provides them for further use.

• produces: loadFile produces Packet, ProcessorManager and Pipeline due to the input,
which includes user choices which effects attributes of these entities.

Short descriptions of attributes are given below but detailed information about attributes
can be found at section 5.3 Logical Viewpoint.

• Packet

– voxelCoordinates: Coordinates of the brain voxels.

Simple Labs 21 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 5 DESIGN VIEWPOINTS

– edges : Edge matrix.

• ProcessorManager

– processors : list of processors.

• PipeLine

– processors : list of processors.

5.5 PATTERNS USE VIEWPOINT

In this part of the design document, how subsystem will be connected and in which
order their functions will be called is explained. The order of the function can be seen in
Collaboration Diagram. First of all, duties of functions in the diagram will be explained.

Function Name Function Duty
loadFile() This function is called by user to load the data taken by fMRI machine.

This function starts the Input subsystem.
downsampleData() This function is called by Input subsytem to connect the Filtering

subsystem to downsample the given data to minify it.
quantizeData() This function is called by the Filtering subsystem after execution of

downsampleData() to reduce the file size and ease the handling of
data. This function does quantization on input.

showBrain() This function is called by Filtering subsytem to connect the Visual-
ization subsystem after execution of quantizeData() function. This
function shows the processed data as a 3D image. This function uses
built-in Unity3D functions and OpenGL libraries and function imple-
mented by the Simple Labs.

changeDisplay() This function is called if the user adjusts transparency, colors, rotation,
zoom or layer depth or changes the display by clicking on "Show Side-
by-Side" or "Four Regions" button. This function cannot be called
before the showBrain() function.

Simple Labs 22 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 5 DESIGN VIEWPOINTS

InputInput

FilteringFiltering

VisualizationVisualization

6:updateDisplay()

5:changeDisplay()

4:showBrain()

3:quantizeData()

2:downsampleData()

1:loadFile()

User

Order of Function

The function is called with respect to numbers stated in diagram.

Firstly, first function is called and input data is loaded to the system. Secondly, second
and third functions are called and system is started. After that, fourth function is called to
show the 3D image created with the processed data. Lastly, fifth and sixth functions are
called repeatedly when there is a user interaction until the program is closed.

Simple Labs 23 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 5 DESIGN VIEWPOINTS

5.6 INTERFACE VIEWPOINT

Interface viewpoint can be decomposed into three major components.
First, the data importer module is responsible for importing voxel position values, voxel

intensity values and edges (arclengths). The file format will be MATLAB file format; however,
this module can be extended with ability to handle other file formats, namely CSV, raw text,
etc. Second, the filtering module is responsible for preparing data to be shown on the screen
smoothly. This includes down-sampling, quantization, edge boundling e.g. techniques. The
output of this component will be ready-to-draw voxel position parameters, voxel intensity
values and edges (archlengths). Lastly, visualization component will use 3D rendering en-
gine and draw the image to the screen. This is visualized using UML component diagram
below.

Data Importer ModuleData Importer Module Filtering ModuleFiltering Module

Visualizing ModuleVisualizing Module

DataPacket

DataPacket

Planned user interface is depicted at Figures 5.1, 5.2, 5.3, 5.4 and 5.5. There will be only
one main screen. Left pane is the image plane and user will be able to interact with this
plane to rotate the 3D image. On the right pane, controls for rotating and zooming will be
placed. Layer depth, transparency and voxel size will be customizable through a slider. Filter
group lists the filters available (namely down-sampling, quantization, edge-bundling e.g.).
Note that as the research continues new filters will be added. Filter options can be set up
through edit menu -> Filters. Region can be selected using a dropdown menu. Available
options will be whole brain, frontal lobe, parietal lobe, occipital lobe, temporal lobe and
limbic lobe. Note that however, these region options are tentative. Lastly, a suitible view for
colorblind people will be generated if the related option is enabled.

Our intention for the behaviour of these right pane options is as follows. As any op-
tion change occurs, the related action will be triggered instantaneously. However, as the

Simple Labs 24 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 5 DESIGN VIEWPOINTS

processing might take some time, an popup box indicating work done will be shown.

Figure 5.1: Main window

Simple Labs 25 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 5 DESIGN VIEWPOINTS

Figure 5.2: File menu

Figure 5.3: Edit menu

Simple Labs 26 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 5 DESIGN VIEWPOINTS

Figure 5.4: View menu

Figure 5.5: Help menu

Simple Labs 27 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 5 DESIGN VIEWPOINTS

5.7 INTERACTION VIEWPOINT

This section of the Software Design Description explains interactions between several
objects of the project. Below, interactions happening on operations such as loading data,
applying processors, creating pipelines can be seen. A simple written explanation is given
with diagrams.

5.7.1 LOADING DATA

When LoadData process is initiated with a file name, first thing it does is to open given file.
After that, it gives control to ProcessorManager via a CanReadFormat call. ProcessorManager
forwards this call to registered "input" type Processors. First available input Processor is
generated with the given filename and added to the Pipeline. This Pipeline object is then
returned.

create

open given file

GetType
[input,process,sink]

CanReadFormat
bool

CanReadFormat(filename,handle)

bool

GetType
[input,process,sink]

CanReadFormat
bool

GetReader(filename,handle)

pr

AddProcessor(pr)

bool

LoadFile:

pl:Pipeline PM:ProcessorManager pr:Processor

5.7.2 APPLYING PROCESSORS

Processors are bound to Pipeline objects. However, they can be called without being
bound. This flow explains how a Pipeline applies Processors. Pipeline object will generate a
Packet object and follow Processor chain. A Processor is free to do whatever it wants on a

Simple Labs 28 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 5 DESIGN VIEWPOINTS

Packet.

GetData
double[][]

GetExtra
Box

Process(input)

Packet

pl:Pipeline pl->processors:Processor input:Packet

5.7.3 CREATING PIPELINES

This diagram assumes named Processor creation from array. ProcessorManager finds
wanted Processor and forwards call to it.

create

find given processor

FromArray(array[1:])
pr:Processor

FromArray(array)

Processor
AddProcessor(pr)

bool

main:

pl:Pipeline PM:ProcessorManager pr:Processor

5.8 ALGORITHM VIEWPOINT

This section of the Software Design Description focuses on algorithmic aspects of the
project. The project aims to minimize on-screen data, i.e. voxels and edges. However, this
minimization process must be done delicately, so that only redundant information is purged.
When this property is combined with projects big data requirements, even simple processes
like sorting and finding N strongest edges become a computational problem.

In this version of the Software Design Description, there is no actual algorithm description.
They will be added when figured out. Below is the types of minimization algorithms that will
be used.

Simple Labs 29 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 5 DESIGN VIEWPOINTS

5.8.1 SPATIAL MINIMIZATION ALGORITHMS

This kind of algorithms try to minimize number of voxels. Sufficiently near voxels are
combined. However, this type of algorithms change size of voxels, requiring a more compli-
cated drawing method.

5.8.2 FUNCTIONAL MINIMIZATION ALGORITHMS

This kind of algorithms try to minimize number of edges drawn. 80000 voxels are not
really much of a job given current capacity of graphics cards. However, routing and drawing
6.4 billion edges is computationally exhaustive. It also makes the output hard to understand.
Because of these, this type of algorithms are essential to the project.

Simple Labs 30 of 31

SIM
PLE

LABS

METU, DEPARTMENT OF COMPUTER ENGINEERING 6 TIME PLANNING

6 TIME PLANNING

The project is planned to be finished by June 2014. There will be 4 revisions. At each
revision, the program will become more usable and bug-free.

At first revision, it is planned to have basic visualization functionalities. We will work with
a toy dataset to understand data fields.

At second revision, processing pipeline will be implemented. This pipeline will enable us
to do some basic operations on dataset. Hardware accelleration will not be used at this point.

Third and fourth revisions will be focused based on client feedback.

Simple Labs 31 of 31

	Overview
	Scope
	Purpose
	Intended Audience
	References

	Definitions
	Conceptual Model For Software Design Descriptions
	Software Design In Context
	Software Design Descriptions Within The Life Cycle
	Influences on SDD Preparation
	Influences on Software Life Cycle Products
	Design Verification and Design Role in Validation

	Design Description Information Content
	Introduction
	SDD Identification
	Design Stakeholders and Their Concerns
	Design Views
	Design Viewpoints
	Design Rationale
	Design Languages

	Design Viewpoints
	Introduction
	Context Viewpoint
	Design Concerns
	Design Elements
	Example Languages

	Logical Viewpoint
	Packet Class
	Processor Interface
	Pipeline Class
	ProcessorManager Class

	Dependency Viewpoint
	Patterns Use Viewpoint
	Interface Viewpoint
	Interaction Viewpoint
	Loading data
	Applying processors
	Creating pipelines

	Algorithm Viewpoint
	Spatial Minimization Algorithms
	Functional Minimization Algorithms

	Time Planning

