

MIDDLE EAST TECHNICAL UNIVERSITY
DEPARTMENT OF COMPUTER ENGINEERING

2015

Poker Playing Agent

Software Design Description

REVISION: 1.0

STANDARD: IEEE SDD 1016

 A4
HÜSEYIN ALEÇAKIR

HÜSEYİN AYDIN

HEVAL AZİZOĞLU

ZÜLFİYE ARĞIN

2015

1

PREFACE

This document contains the system design information for Poker Playing Agent Project. The

document is prepared according to the “IEEE Standard for Information Technology

Systems Design –Software Design Descriptions – IEEE Std. 1016 – 2009”.

This Software Design Documentation provides a complete description of all the system design

and views of Poker Playing Agent Project.

The first section of this document presents scope, purpose, overview, intended audience,

reference material and definitions and abbreviations of the project.

The second chapter includes definitions which are used in the document.

The third chapter describes the conceptual model for software design descriptions.

The fourth chapter of this document specifies the design description content for the whole

system.

The last chapter of this document includes design viewpoint of the Poker Playing Agent Project.

2

Record of Changes

Version Number

Date

Number of

Section

A – Added

M – Modified

D - Deleted

Title or brief description

1.0 04.01.2015 First Release

1.1 01.03.2015 4.7 M Motivation of project was

added

1.1 01.03.2015 5.2 M Usage of the system was

divided according to user type

1.1 01.03.2015 5.3 M The explanation of

components was added

1.1 01.03.2015 5.4 M Game API was included

1.1 01.03.2015 5.6 M Cardinality constraints were

added

1.1 01.03.2015 5.7 M Observer Pattern was

removed

1.1 01.03.2015 5.11 M Bayesian Network diagram

was added

3

Table of Contents
1 OVERVIEW .. 5

 SCOPE ... 5

 PURPOSE .. 5

 INTENDED AUDIENCE .. 5

 REFERENCES .. 5

2 DEFINITIONS, ACRONYMS AND ABBREVIATIONS .. 6

3 CONCEPTUAL MODEL FOR SOFTWARE DESIGN DESCRIPTIONS 6

 SOFTWARE DESIGN IN CONTEXT ... 7

 Application Overview .. 7

 Technologies Used .. 7

 SOFTWARE DESIGN DESCRIPTIONS WITHIN THE LIFE CYCLE 7

 Influences on SDD Preparation .. 7

 Influences on Software Life Cycle Products ... 8

 Design Verification and Design Role in Validation .. 8

4 DESIGN DESCRIPTION INFORMATION CONTENT ... 8

 INTRODUCTION ... 8

 SDD IDENTIFICATION ... 8

 DESIGN STAKEHOLDERS AND THEIR CONCERNS ... 9

 DESIGN VIEWS .. 9

 DESIGN VIEWPOINTS ... 9

 DESIGN ELEMENTS .. 10

 DESIGN RATIONALE ... 10

 DESIGN LANGUAGES ... 11

5 DESIGN VIEWPOINTS .. 11

 INTRODUCTION ... 11

 CONTEXT VIEWPOINT .. 11

 COMPOSITION VIEWPOINT .. 14

5.3.1 Game Client .. 14

5.3.2 Agent ... 15

5.3.3 Database ... 15

4

 LOGICAL VIEWPOINT .. 16

 Meerkat API ... 16

 State Manager Class .. 19

 History Class .. 22

 Hand Evaluator Class ... 23

 Opponent Modeler Class .. 24

 Strategy Decider Class ... 25

 DEPENDENCY VIEWPOINT .. 27

 INFORMATION VIEWPOINT .. 28

 PATTERNS USE VIEWPOINT .. 29

 INTERFACE VIEWPOINT ... 30

 Add AI Interface ... 30

 Choose Game Type Interface .. 31

 Choose Poker Type Interface ... 31

 RING Games Interface ... 32

 Game Table Interface ... 33

 INTERACTION VIEWPOINT ... 34

 Add AI Component ... 34

 Choose Game Type ... 35

 Choose Poker Type.. 36

 Choose Table ... 36

 Create New Table .. 37

 Add Bots to Game Table .. 38

 Load Table ... 39

 Choose Spectator Mode ... 40

 Deal Hand .. 41

 STATE DYNAMICS VIEWPOINT .. 42

 ALGORITHM VIEWPOINT .. 43

6 TRACEBILITY MATRIX .. 46

5

1 OVERVIEW

 SCOPE

In this document, design description for the Poker Playing Agent project will be provided to

the audience. A structural overview of all modules, data and interfaces will be defined. There will

be a set of design views to be more specific about the design and development process of the

project. Overall, this documentation will give a basic understanding of how the project will be

implemented. As a base reference, Software Requirements Specification of this project will be

used.

 PURPOSE

The main purpose of this document is to show and detail the architecture of Poker Playing

Agent Project with the help of design viewpoints. This document will be used as a reference by

the development team in implementation phase. In order to specify the design and development

processes and supply a simple and basic architecture, a group of design views will be offered with

UML diagrams. Also an explicit understanding about how the project will be implemented will be

provided with the algorithmic explanations. Contents of this document may include some

assumptions which will have certainty after implementation.

 INTENDED AUDIENCE

This document is intended for various types of stakeholders such as the developers of the

PPA system, forthcoming researchers of Computer Poker domain and game designers and

developers in the game industry that may be willing to use agent developed within this project to

provide a guidance to them.

 REFERENCES

 IEEE. IEEE Std 1016-2009 IEEE Recommended Practice for Software Design Description..

IEEE Computer Society, 2009.

6

 StarUML 5.0 User Guide. (2005). Retrieved from

http://staruml.sourceforge.net/docs/user- guide(en)/toc.html

 “Poker Playing Agents” Software Specification Requirements (SRS) Document, 2014.

 “Opponent Modeling in Reinforcement Learning for Partially Observable Stochastic

Games: Poker, a case study”, AI & R Lab, 2014.

 “Bayesian Networks” in Ruggeri F., Faltin F. & Kenett R., Encyclopedia of Statistics in

Quality & Reliability, Wiley & Sons, Ben-Gal I., 2007.

2 DEFINITIONS, ACRONYMS AND ABBREVIATIONS

ABBREVIATION DEFINITION

SDD Software Design Description

SRS Software Requirements Specification

UC Use Case

UML Unified Markup Language

IDE Integrated Development Environment

PPA Poker Playing Agent

BN Bayesian Network

PDT Probabilistic Decision Tree

3 CONCEPTUAL MODEL FOR SOFTWARE DESIGN

DESCRIPTIONS

In this section, a conceptual model for SDD will be given. Conceptual model contains basic

terminology and concepts of the document. Furthermore, the context of SDD will be explained

with this conceptual model.

7

 SOFTWARE DESIGN IN CONTEXT

 Application Overview

The main aim of Poker Playing Agents project is to produce computer poker agents which

have ability to beat average human players and well-known computer poker agents in the

literature. This project will provide an efficient and effective agent to Computer Poker literature

which will be implemented with the state of the art methodology. Also with this project, team

will introduce a testing methodology to evaluate agents’ performance and decisions. Users which

encapsulate other developers and researchers can adapt and test their bots with this system.

In general, PPA system consists of two major components; agent component and third

party poker game client. Agent component will include two subsystems; learning part and

decision part. These two subsystems will work collaboratively. Any operation done in learning

part will affect decision part. Additional information to decide next action of poker bot will be

supplied by learning part. The other component, game client, will provide user interfaces and

testing environment to the system. Poker Academy is chosen as this third party application for

now.

 Technologies Used

Poker Playing Agent system will be developed using Java programming language on

NetBeans IDE as development environment. System requires agents to be compiled with JDK 5 to

adapt their class files to game client. System will use MySQL database server for database

purposes. StarUML will be used in the design process to create required diagrams.

 SOFTWARE DESIGN DESCRIPTIONS WITHIN THE LIFE CYCLE

 Influences on SDD Preparation

The software requirements specification (SRS) for Poker Playing Agent project is the key

software life cycle product that drives software design. Software requirements specification

includes functional and non-functional software requirements that drive design process and also

design constraints that should be considered and observed during design.

8

 Influences on Software Life Cycle Products

Some of the requirements may change during the preparation stage of SDD and/or during

the implementation phase of the project. Also, SDD may affect test plans and test documentation

of Poker Playing Agent Project.

 Design Verification and Design Role in Validation

Design shall be verified and validated during the testing stage. System parts will be checked

with the prepared test cases. With these test cases, it will be determined whether the system

fulfills the specified requirements or not. In validation progress, the system will be tested whether

it is the correct system. In the verification progress, the system will be tested whether it is being

developed correctly.

4 DESIGN DESCRIPTION INFORMATION CONTENT

 INTRODUCTION

This SDD document is prepared for Poker Playing Agent project. It describes how this system

will be designed and implemented. Detailed design cases will be explained in the following

sections by using necessary diagrams, design views and design viewpoints about the structure of

the PPA.

 SDD IDENTIFICATION

After testing for the validation and verification, it is expected that Poker Playing Agent

system will be completed at the end of May 2015. PPA will introduce another perspective to the

computer poker literature. System will be built with state-of-the-art algorithms and it will be a

chance for other developers and researchers to observe the outcomes in a real world problem. It

is planned to share this gained knowledge with the community by publishing a paper at the end

of the project. For further information, section “1.Overview” can be examined.

9

 DESIGN STAKEHOLDERS AND THEIR CONCERNS

The stakeholders of the Poker Playing Agent system are forthcoming and current computer

poker researchers, poker game developers and advisors and developers of the project. This

project is shaped with the research interests of the developers in the guidance of advisors’ former

experiences and advices. One possible concern of the stakeholders’ is the system’s reliability. It

should be guaranteed that agent will make rational moves, i.e. it will act according to the poker

game rules and it will always try to maximize its gains during the game. One another possible

concern is the performance of the system; it should give real time responses during the game.

Also, stakeholders of the system want to observe the agents gameplay via a graphical tool. They

want this PPA system to be completed in time and to be informed during the complete process.

 DESIGN VIEWS

Poker Playing Agent system is a research project, which has a continuously evolving nature.

Hence during the design and implementation processes, stakeholders may introduce new

features or may remove some of existing ones to replace with one another. To facilitate this

flexibility, an object oriented and easily extendable modular approach will be adapted while

developing the system. To clarify this design, a contextual view to determine and indicate services

provided by system and how user interacts with them, a logical view to describe class relations,

dependency and patterns use views to define components in and around the system and their

interactions, an interface view to visualize the flow of the information during process and an

algorithm view to describe the essential algorithms that will be used during the development is

needed and will be provided in this SDD.

 DESIGN VIEWPOINTS

● Context viewpoint: This viewpoint focuses on the services provided by the system, the role

of user actor in the system and how actor interacts with it. In this viewpoint, system

boundaries, input and output relations between components should also be explained.

This viewpoint can be used as a base for the evaluation and analysis of the system.

● Composition viewpoint: This viewpoint explains the components of the Poker Playing

Agent system and what roles these components have.

● Logical viewpoint: Class structure of the system is provided in this viewpoint. Interaction

between each class, how they designed and implemented is also specified.

● Dependency viewpoint: System environment and the interconnections between entities

are specified in this viewpoint.

10

● Information viewpoint: This viewpoint describes how persistent data is stored within the

system by providing an Entity Relationship diagram.

● Pattern use viewpoint: It addresses design ideas and patterns which make system more

transparent to both developers and stakeholders.

● Interface viewpoint: This viewpoint specifies the details of the external and internal

interfaces. It is also necessary for the proper testing phase of the system. Some mockup

visualizations and screenshots will be provided while describing the interfaces.

● Interaction viewpoint: It defines the interaction between entities of the system, regarding

why, where, how, and at what level actions occur.

● State dynamics viewpoint: It is used when internal behavior of the system within its

components and with the user is under interest.

● Algorithm viewpoint: This viewpoint describes the basic algorithms required to develop

the system.

 DESIGN ELEMENTS

Design elements occurring in a design view such as design entity, design relationship, design

attribute and design constraints will be explained in section "5. Design Viewpoints" in detail.

Hence for further information please check that section.

 DESIGN RATIONALE

The motivation behind why this project has been chosen and a system has been designed
as explained in this SDD document is finding efficient solutions to poker game problem which
requires handling unreliable and incomplete information and then creating a step towards the
adaptation of these solutions to similar real life problems.

Design choices of this project is based on its research nature and dynamics. A structure

supporting Bayesian Poker has been created to allow a rational decision process and effective

learning component. However, there will be new requirements as time goes by and new features

will be introduced to the system. Hence, design choices are considered to enhance the reusability

and to provide extensibility and sustainability. In addition to this, system’s overall performance is

a base measurement that may affect the general design. After current design being implemented,

a review process will be held to consider possible changes in the system and this may affect the

structure of the system.

11

 DESIGN LANGUAGES

Unified Markup Language (UML) is selected as a part of design viewpoint specification.

This choice is highly related with its well defined semantics and syntax and also its capability to

express object-oriented concepts. Throughout the document, many types of the UML diagrams

will be used and also Entity Relationship diagrams will be provided when necessary.

5 DESIGN VIEWPOINTS

 INTRODUCTION

In this section of the SDD, design viewpoints of the project will be explained. Each design

viewpoint addresses different perspectives to be focused on to cover system requirements and

to discuss these requirements with the stakeholders. Viewpoints that will be covered are listed

below:

● Context Viewpoint

● Composition Viewpoint

● Logical Viewpoint

● Dependency Viewpoint

● Information Viewpoint

● Patterns Use Viewpoint

● Interface Viewpoint

● Interaction Viewpoint

● State Dynamics Viewpoint

● Algorithm Viewpoint

During the explanation of viewpoints, UML diagrams will be used in order to increase

understandability.

 CONTEXT VIEWPOINT

 Context viewpoint shows all of the functionalities of the system provided by the design.
Also in this section of the SDD, system boundaries and interaction between system and users will
be specified.

12

 System environment and how users will interact with it is shown in the diagram below.

Details of the system environment can be found in Section 2.1 Product Perspective of the SRS

document of this project.

Figure 1 Context Diagram

 System actors as users can be divided into categories; forthcoming developers and
researchers and general poker players. Former category will be able to examine our agent’s
capabilities and make their own agents play against ours. Latter ones will only be able to play
against our and other agents as a human player. There will be some differences in the interaction
of the system with different types of users. Developers will interact with the system using
Meerkat library. They will be using functionalities adopted from it to create agents and connect
these agents to the system. However, players will interact with the system by entering Poker
Academy Client and will be treated as regular human players by the system. To conclude,
developers will have the abilities of the players with the additions. Use cases can be seen from
the diagram below.

13

Figure 2 General Use Case Diagram

 Since use cases are explained in the SRS of the project in detail, they will not be examined

here again. For further information, please see Section 2.2 Product Functions of SRS document.

14

 COMPOSITION VIEWPOINT

In this section, the components of the PPA System and their roles are described. A

deployment diagram is given below to render these components.

Figure 3 Deployment Diagram

5.3.1 Game Client

 Users will be able to observe and get statistical information about current and past
games using Poker Academy. To decide its next action, bot will get necessary information such
as community cards, statistical information, current hand information, pot odds via this client
application.

15

5.3.2 Agent

5.3.2.1 Decision Part

 Main task of this part will be analyze opponent’s behaviors, current game state and past
game experiences. After that it will choose best next action based on its analyses.

5.3.2.2 Learning Part

Basically, learning part keeps track of the past game information and opponent’s
behaviors. It stores this information in a Bayesian Network. For each hand learning part has a
Bayesian Network.

5.3.3 Database

Bayesian Networks which are created by learning part will be kept in the database.

When needed necessary information about previous state will be accessed through this

database.

Users will interact with the system through Poker Academy as a game client application

and the next action for the game is chosen using decision part and learning part of agent and

shown with its result to users via Poker Academy. Agent will communicate with database to get

necessary information about which action is the most proper for the current state to these parts.

To explain the structure of the system with its classes and interface, a component diagram

is provided below.

Figure 4 Component Diagram

16

 LOGICAL VIEWPOINT

In this section classes of the Poker Playing Agent system will be explained by giving their UML

class diagrams. There are five classes in the system. These are

 State Manager Class

 History Class

 Hand Evaluator Class

 Opponent Modeler Class

 Strategy Decider Class

 Meerkat API

After examining each class individually, the relationship between these classes will be

provided.

 Meerkat API

Poker Academy provides a Java based API (named the Meerkat API) that allows poker bot coders

to plug in their own custom bots. This gives an excellent environment for bot development as you can

easily play against your bot in a quality GUI or have your bot play thousands of hands against the other

bots. The program also keeps track of all the hands played and can display comprehensive graphs and

analysis of the player statistics.

In this section some major classes will be explained by giving short information and their

usage.

5.4.1.1 Action Class

This class manages actions by a player in a poker game. The major features can be listed as:

 Action Filter does some basic checks to change the action if game conditions warrant it.

 Get Action creates an action from classic values.

 Get Action Index converts an update action to a general action {fold,call,raise} or -1 if not a

normal voluntary action.

17

5.4.1.2 Card Class

This class represents a playing card from a set of cards which map to cards having a suit and a face

value. The major features can be listed as:

 Get Index return the integer index for this card.

 Get Rank obtains the rank of this card.

 Get Suit obtains the suit of this card.

 Set Card changes this card to another.

 Valid tests if the card is valid.

5.4.1.3 Deck Class

A Deck of 52 Cards which can be dealt and shuffled some functions could be made much faster with

some extra memory. The major features can be listed as:

 Deal obtains the next card in the deck.

 Extract Card removes a card from within the deck.

 Find Card finds position of Card in Deck.

 Get Card obtains the card at a specific index in the deck.

 Reset places all cards back into the deck.

 Shuffle places all cards back into the deck and then shuffles the deck.

5.4.1.4 GameInfo Class

This class stores all of the info defining a single game of poker. The major features can be listed as:

 Add Winner adds a player to the list of winners.

 Active Player tests if a player at a specific position is active in the game.

 Big Blind shows big Blind the current player.

 Call calls the current player

 Fold folds the current player

 Get Pot gets the total size of the pot, including all side pots

 Get Board Cards obtains a Hand containing the board cards.

5.4.1.5 Hand Class

This class stores a Hand of Cards (up to a maximum of 7). The major features can be listed as:

 Add Card adds a card to the hand.

18

 Get Card gets the specified card in the hand.

 Get Card Index get the specified card id.

 Remove Card removes the last card in the hand.

 Make Empty removes the all cards from the hand.

 Size gets the size of the hand.

5.4.1.6 PlayerInfo Class

This class stores all of the information for a player during a poker game. The major features can be

listed as:

 Active return true if the player is still active in the hand.

 All In determines if a player is All-In.

 Get Amount in Pot obtains the amount the player has put in the pot..

 Get Amount to Call determines the amount a player must pay to stay in the game.

 Get Game Info gets the context of the last action made by this player.

 Get Last Action returns a single integer code for the last action made.

5.4.1.7 Pot Class

This class handles a Pot data structure, which accumulates money from players, and can break into

multiple side pots. The major features can be listed as:

 Remove Uncalled Chips removes all uncalled chips from the pot.

19

 State Manager Class

This class manages flow of information between other components and it makes the interaction

with Game API.

Attributes and methods of State Manager class are examined below.

Name Type/Return Value

Type

Visibility Definition

currentAction Struct<String, String,

Float, Date>

communityCards This struct keeps the

information about

the current action

who take(name),

what kind of action

take(i.e. fold, chech

etc.), how much

gain(amount of

money) with the

time staps.

communityCards List<String> Public This variable keeps
the information
about community

Figure 5 State Manager Class

20

cards which can be
seen from anyone.

potOdd Float Public This variable keeps
the information
about the total
amount of money
which is in pot.

minimumBet Float Public This variable keeps
the information
about the minimum
amount of money
which is required to
continue game.

ourBankrollAmount Float Public This variable keeps
the information
about the total
amount of money
we possess.

opponentsBankroll List<Pair<String,

Float>>

public This variable keeps
the information
about the total
amount of money
which each player
possess.

handEvaluatorInfo List<Pair<String,

Float>>

Public This variable keeps
the information
about estimated
winning chance
which is produced
from Game itself.

numberOfPlayedHands Integer Public This variable keeps
the information the
number of game we
played.

numberOfWon Integer Public This variable keeps
the information the

21

number of game
which we won.

amountOfDollarsWon Float Public This variable keeps
the information
about the total
amount of money
which we gain.

sessionNumber Integer Public This variable keeps
the information
about the number of
game we play
currently.

getStateInformation Void Public This function gets

the information from

Game API and assign

them into its

attributes.

getStatistics Void Public This function gets

statistics which is

generated from

Game itself through

Game API.

sendStateInformation Void Public This function sends

whole state

information to

History Class,

Strategy Decider

Class, Hand

Evaluator Class and

Opponent Modeler

Class.

sendStatistics Void Public This function sends

whole statistics to

History Class,

Strategy Decider

Class, Hand

22

Evaluator Class and

Opponent Modeler

Class.

doFinalAction Void Public This function sends

the final action

which is produced

from Strategy

decider Class.

 History Class

This class keeps the past statistics and state information with time stamps which we use

to train our model and also it makes the interaction with State Manager class. It keeps the

information inside the database. This class is generalization of State Manager.

Attributes and methods of History class are examined below.

Name Type/Return Value

Type

Visibility Definition

databaseAddress Object Public This variable keeps

the information

about the address of

the database

saveDatabase Void Public This function saves

the information

which is taken from

State Manager

Figure 6 History Class

23

getStatistics Void Public This function gets the

past statistics from

database

getStateInformation Void Public This function gets the

past state

information from

database

sendPastData Void Public This function sends

the past data to the

state manager.

 Hand Evaluator Class

This class uses the current state observations to calculate absolute numerical score. This

class is generalization of State Manager.

Figure 7 Hand Evaluator Class

Attributes and methods of Hand Evaluator class are examined below.

Name Type/Return Value

Type

Visibility Definition

score Integer Public This variable keeps

the absolute

numerical score

handCards List<string> Public This variable keeps

the cards that we

have with the

community cards

24

getCurrentStateObservation List<String> Public This function gets

the current hand

information and set

them to the

handCards variable

calculateScore Integer Public This function gives

the hand an

absolute numerical

score. Higher score

= better hand.

 Opponent Modeler Class

This class keeps the Bayesian Network. It creates Bayesian Network from the information

that we take during the game and past game states information with time-stamps. This network

is used for making inference about opponent players. This class is generalization of State

Manager.

Attributes and methods of Opponent Modeler class are examined below.

Name Type/Return Value

Type

Visibility Definition

Bayesian Network List<List<Integer,

Integer, Float>>

Public This variable keeps

probabilistic

Figure 8 Opponent Modeler Class

25

graphical model that

represents a set of

random variables

and their conditional

dependencies via a

directed acyclic

graph. The First two

integer represents

the vertices and the

last one represents

the weight between

these vertices.

updateBayesianNetwork Void Public This function

updates the

Bayesian Network

with the given

information

createBayesianNetwork Void Public This function creates

the Bayesian

Network.

 Strategy Decider Class

This class keeps the probabilistic decision tree. This tree explicitly represent decisions and

decision making and the resulting classification tree can be an input for decision making. It creates

the tree from the information that are gathered Bayesian Network and past/current state

information from State Manager. This class is generalization of State Manager.

 Figure 9 Strategy Decider Class

26

Attributes and methods of Strategy Decider class are examined below.

Name Type/Return Value

Type

Visibility Definition

PDT List<List<Integer,

Integer, Float>>

Public This variable keeps a

probabilistic decision

tree as a predictive

model which maps

observations about

an item to

conclusions about

the item's target

value. The First two

integer represents

the vertices and the

last one represents

the weight between

these vertices.

createPDT Void Private This function creates

probabilistic decision

tree.

updatePDT Void Private This function updates

the probabilistic

decision tree with

the given information

prunePDT Void Private With this function we

reduces the size of

decision trees by

removing sections of

the tree that provide

little power to

classify instances.

strategyEvaluation String Public This function

analyzes the tree and

concludes final

decision. It returns

27

Action which is

defined in Action

enumeration class.

B

Figure 10 Class Diagram of the PPA

 DEPENDENCY VIEWPOINT

Dependency viewpoint is related to interconnection and access among entities. Since it is

so closed to implementation, this viewpoint will be omitted in this document. Detailed description

of entities can be found in "5.4 Logical Viewpoint" section and functionalities and explanation of

them in "5.3 Composition Viewpoint". For any further information, please check SRS document

and "5.10 Interaction Viewpoint" section of this document.

28

 INFORMATION VIEWPOINT

Poker Playing Agent system has a database to store statistical information of games which will

be used in learning component of the agent and will affect the strategy. This database has five

tables and detailed explanations of them can be found in the followings. Furthermore, an Entity -

Relationship diagram of the database is given in Figure 11.

● History: This table stores the necessary information about in which state which action is

selected and next state according to this selection. ‘historyID’, ‘playerStateID’, ‘action’,

‘amount’ and ‘nextPlayerStateID’ are the attributes of the table. ‘playerStateID’ and

‘nextPlayerStateID’ are the ids for current state and next state respectively. ‘action’

attribute indicates the type of selected action and ‘amount’ is used for amount of the chips

put into table in case of this selection being bet or raise. ‘historyID’ is the primary key for

this table.

● Player: In this table, ‘playerID’, ‘name’, ‘description’ and ‘isAgent’ fields are stored. ‘name’

is the given name for the player and description field can be set especially if player is agent

and more specific explanation is needed. ‘isAgent’ is a boolean value indicating whether

player is an agent or a human and ‘playerID’ is the primary key for this table.

● PlayerState: The information about player state is kept in PlayerState table.

‘playerStateID’, ‘playerID’, ‘gameStateID’, ‘handCards’, ‘turnNo’, ‘callAmount’ and

‘bankroll’ are the attributes. ‘playerID’ is the id of the player and ‘handCards’ are the cards

that player have in current state. ‘turnNo’ indicates which turn current state is.

‘callAmount’ is the chip amount that keep player in the game for the current state and

‘bankroll’ is the chip amount that player have. ‘playerStateID’ is the primary key of this

table.

● Game: This table stores the information about the game. ‘gameID’, ‘beginTime’ and

‘endTime’ are the attributes of the table. ‘beginTime’ and ‘endTime’ are the timestamps

indicating the starting and finishing time of the game. ‘gameID’ is the primary key of this

table.

● GameState: GameState table is used for keeping information about the game state.

‘gameStateID’, ‘communityCards’, ‘status’, ‘dealerID’, ‘sBlindID’, ‘bBlindID’, ‘handNo’,

‘gameID’ are the attributes of the table. ‘communityCards’ attribute is used for the

common cards in the table. ‘status’ indicates whether the game is in preflop, flop, turn or

river stage. ‘dealerID’, ‘sBlindID’ and ‘bBlindID’ are the ids of players who are dealer, small

blind and big blind in current hand respectively. ‘handNo’ keeps how manyth current hand

is. ‘gameID’ is the id of the game and ‘gameStateID’ is the primary key for this table.

29

 PATTERNS USE VIEWPOINT

Design patterns are general reusable solutions to widely generated problems which define

how to solve these problems in many different situations. Usage of these patterns make the

design more understandable and clear to all stakeholders to discuss on it. In the design of this

project, various design and architectural patterns will be used and they will be listed and

discussed below.

Client-Server Pattern: In Poker Playing Agent system, third party poker game application

composes client part and agent component acts as a server. Client, game application, will send

request to server for the next applicable action in the game and after this request, agent will

compute possibilities and decide next possible effective action. Later, this prepared action

response will be sent to client to be executed in the gameplay.

Figure 11 Entity Relationship Diagram

30

Strategy Pattern: In PPA system, agent will be able to choose among many possible poker game

actions, such as fold, bet, raise… With the strategy design pattern they will be made them

interchangeable by encapsulating them under the same algorithm family. Strategy pattern will let

the next action decision vary independently from agent that uses it.

 INTERFACE VIEWPOINT

In this section, usage of the services that are provided design is explained by giving the
details of the external interfaces of the Poker Playing Agent system. These external interfaces can
be classified into two categories. First category includes the interfaces of the Settings part that
are responsible for the configuration of the game to be displayed. Second one includes the
interfaces of game part that are responsible for displaying the game basically.

In the following sub-sections each interface of Poker Playing Agent system will be examined.

 Add AI Interface

In this interface, users may develop their own artificial intelligence bots. Using this

functionality these different poker bots can be added to system.

Figure 12 Add AI Interface

31

 Choose Game Type Interface

In this interface, user can choose type of the poker game by using this functionality. User

can choose Ring Games, Tournaments, Poker Academy Online.

Figure 13 Choose Game Type Interface

 Choose Poker Type Interface

In this interface, after choosing “Ring Games” option in the main menu, user will be able

to choose which type of poker he/she and bots will be play. There are options which are “Limit”

and “No-Limit” are shown to the user.

32

Figure 14 Choose Poker Type Interface

 RING Games Interface

In this interface, under the “Limit” and “No-Limit” options, user will be able to choose an

existing game table. There is a set a bankroll button to change bankroll amount. User may change

these initial configurations of the tables and may join with his/her own bot to the game. And also,

user can create new table by clicking on create table button which is on top left of the page.

There is a load game button, user can change existing or new created table`s configuration

before loading the game.

33

Figure 15 RING Games Interface

 Game Table Interface

In this interface,

 There is a table in the center of the page which game will held.

 There are chairs around table which for player.

 There is a deal hand button to start the game.

 There is ribbon button on the right side of the game by this button user can exit game, see

statistics, use calculator and inspects some graphics which is related with current game.

 Again on the right panel there is a real time advisor. User can read scripts from this panel.

34

Figure 16 Game Table Interface

 INTERACTION VIEWPOINT

Interaction viewpoint is provided through sequence diagrams to explain the main

functionalities of the Poker Playing Agents project. Details of the each viewpoint can be found in

the "2.2 Product Functions" section of SRS.

 Add AI Component

This section refers to 2.2.1 section of the SRS document. In order add an AI bot:

● User puts the configuration file of the bot, namely pd file, into the “bots” folder which is

located in “PokerAcademyPro2/data/”.

● User clicks “Opponent Manager” button in the game menu.

● User clicks the “Import” button and choose pd file of the bot.

● User clicks “Save” button.

35

Figure 17 Interaction 1

 Choose Game Type

This section refers to 2.2.2 section of the SRS document. User can choose type of the poker

game by using this functionality. After the poker academy is started three different game types

at the main menu which are “Ring Games”, “Tournament”, “Poker Academy Online” are shown

to the user. To adapt and play their own artificial intelligence bots:

● User should be entered in “RingGames”. User can choose this mode by clicking the button

“Ring Games”.

36

Figure 18 Interaction 2

 Choose Poker Type

This section refers to 2.2.3 section of the SRS document. Since there is no specific action

to choose poker type, sequence diagram of this use case does not provided. Choose poker type

action can be performed by choose table action.

 Choose Table

This section refers to 2.2.4 section of the SRS document.

Under the “Limit” and “No-Limit” options, user will be able to choose an existing game table:

● User clicks the name of the table which are created according available bots capabilities,

initial bankroll value and number of players.

37

Figure 19 Interaction 3

 Create New Table

This section refers to 2.2.5 section of the SRS document. This functionality is for the user who

wants to create a new table instead of choosing an existing game table. In order to create a table:

● User clicks “Create a new table” button.

● User can add bots to the game table, set initial bankroll, stakes and house rake amounts

by clicking the dropdown menu of these fields.

38

Figure 20 Interaction 4

 Add Bots to Game Table

This section refers to 2.2.6 section of the SRS document. By using this functionality user can

add bots he/she chooses to the table. In order to do this:

● User clicks right button on the player list layout.

● A list of available AI bots on the system is shown to the user.

● User can choose their own bots or another famous bots in the literature to add game

configuration.

39

Figure 21 Interaction 5

 Load Table

This section refers to 2.2.7 section of the SRS document. After a table chosen or the

configuration of a new table is done in order to start the game:

● User clicks “Load Table” button or double clicks the name of the table. Initial game screen

will be created according to chosen bots and bankroll amount and game will be ready to

start.

40

Figure 22 Interaction 6

 Choose Spectator Mode

This section refers to 2.2.8 section of the SRS document. To become an observer during the

game:

● User clicks his/her player name and set bankroll from appearing menu.

● User enters “0” as bankroll amount and clicks “OK” button.

● After that if user does not want the game flow to be interrupted, he/she clicks “Options”

Menu and then “Auto Deal”.

41

Figure 23 Interaction 7

 Deal Hand

This section refers to 2.2.9 section of the SRS document. After game table is available for user,

he/she may manage card dealing process:

● If “Auto Deal” option is selected in the game menu, it must be clicked as mentioned

Previous use case again so that it is closed. Closing these option will enable user to use

Analytical tools game will provide, such as “Player Statistics”, “Hand Evaluator” for each

Hand separately.

● After the auto deal is closed user clicks “Deal Hand” button to start a hand in the game.

● Even if user wants to use auto deal property user must click “Deal Hand” button to start

first hand of the game.

42

Figure 24 Interaction 8

 STATE DYNAMICS VIEWPOINT
This viewpoint indicates the dynamic behavior of the system as a response to specific events

which can be internal or result of the interaction with the user. States and transitions between

them which occur under the effects of these specific events are shown in the following state

diagram.

43

Figure 25 State Diagram

 ALGORITHM VIEWPOINT

The algorithm viewpoint provides details needed by agent developers and analyst of the

agent in regard to time-space and logical decision performance. In this viewpoint, general artificial

intelligence algorithms and how they will be used in Poker Playing Agent system will be discussed.

Partially Observable Markov Decision Process: Markov Decision Process provides a mathematical

framework for modeling decision-making in situations where outcomes are partly random and

partly under the control of the decision maker. MDP’s are useful for studying a wide range of real

world problems solved via dynamic programming and reinforcement learning. More precisely a

Markov Decision Process is a discrete time probabilistic decision process characterized by a set of

states. In each state, there are several actions from which the decision maker must choose. For a

state s and an action a, a state transition function determines the transition probabilities to the

next state. After the next state is entered the decision maker earns a reward which depends on

the new state. The states of an MDP possess the Markov property. This means that if the current

state of the MDP at time t is known, transition probabilities to a new state at time t + 1 are

independent of all previous states. A Partially Observable Markov Decision Process (POMDP) is

44

an extension of a Markov Decision Process including hidden information about states. POMDPs

are used for choosing actions when the entire world, or state space, is not always directly

observable. In other words, you cannot always immediately know where you are in the world and

what is going on. Poker is partially observable: you can narrow down which cards are in your

opponents’ hands from your cards, their bids, and the cards on the table. However, you cannot

directly observe which cards are still in their hands. In Poker Playing Agent system, this

methodology will be used in the decision component of the agent.

Bayesian Networks: Bayesian networks (BNs) belong to the family of probabilistic graphical

models. These graphical structures are used to represent knowledge about an uncertain domain.

In particular, each node in the graph represents a random variable, while the edges between the

nodes represent probabilistic dependencies among the corresponding random variables. These

conditional dependencies in the graph are often estimated by using known statistical and

computational methods. Hence, BNs combine principles from graph theory, probability theory,

computer science, and statistics. A BN reflects a simple conditional independence statement.

Namely that each variable is independent of its non-descendants in the graph given the state of

its parents. This property is used to reduce, sometimes significantly, the number of parameters

that are required to characterize the joint probability distributions of the variables. This reduction

provides an efficient way to compute the posterior probabilities given the evidence. In computer

poker, this reduction provides an efficiency in the data storage and enables agents to be fed with

less complex information. This enables the creation of efficient agents in terms of real time

responses and effectiveness since noisy and irrelevant data is eliminated when building BN. In

Poker Playing Agent system, this methodology will be used in both decision and learning

component of the agent.

Here is the diagram that explain how Bayesian Network will be constructed and the

explanation of the nodes in the network can be found below of it.

45

Figure 26 Structure of BN

NextAction: Valid actions which are made during betting rounds are stored in this node.

Utility: It selects best action to take by analyzing incoming state probabilities of the Win node, the
available actions from NextAction and the estimated winnings to output a series of utility values
for each action.

Showdown: State of this node is decided who has the better hand.

AgentFinal: Represents agent’s final hand.

OpponentFinal: Represents opponent’s final hand.

AgentAction: It represents last action of the agent.

OpponentAction: It represents last action of the opponent.

AgentCurrent: Represent partial hands for the agent. It is affected by the CommunityCards and
Round nodes.
OpponentCurrent: Represent partial hands for the opponent. It is affected by the
CommunityCards and Round nodes.

CommunityCards: It represents current cards on the board.

Round: Current round.

46

6 TRACEBILITY MATRIX

 UC. 1

In SRS

UC. 2

In SRS

UC. 3

In SRS

UC. 4

In SRS

UC. 5

In SRS

UC. 6

In SRS

UC. 7

In SRS

UC. 8

In SRS

UC. 9

In SRS

Figure

1

 X X X X

Figure

2

X X X X X X X X X

Figure

3

X X X X X X X X X

Figure

4

X X X X X X X X X

Figure

5

 X X

Figure

6

X X X X X X X X X

Figure

7

 X X X X X

Figure

8

 X X X X

Figure

9

 X X X X

Figure

10

 X X X

Figure

11

X X X X X X X X X

Figure

12

 X X

Figure

13

 X X X X

Figure

14

X X X X X X X X X

Figure

15

X X X X X X X X X

47

Figure

16

X

Figure

17

 X

Figure

18

 X

Figure

19

 X

Figure

20

 X

Figure

21

 X

Figure

22

 X

Figure

23

 X

Figure

24

 X

Figure

25

X X X X X X X X X

