

SOFTWARE REQUIREMENTS
SPECIFICATION

Version: 1.0
Date: 30.11.2014

 Beeminder supported sub applications suite

Name ID

Prepared by Rufet Eyvazli 1645894

Prepared by Esragul Korkmaz 1881341

Prepared by Songul Abuzar 1678614

Prepared by Alihuseyn Gulmammadov 1848282

Preface

This document contains the system requirements for Android Data Entry
Application Suite for Beeminder Project. This document is prepared according to scaled
version of the “IEEE Recommended Practice for Software Requirements Specification –
IEEE Std 830 –1998” for CENG491.
This Software Requirements Specification provides a complete description of all the
functions and specifications of the Android Data Entry Application Suite for Beeminder
Project.

The first section of this document includes purpose, scope, references,
definitions
and overview of the document.

The second section of this document includes product perspectives, System
Interfaces , User Interfaces , Hardware Interfaces , Software Interfaces ,
Communication Interfaces , Hardware Constraints , Operations , Memory constraints ,
Application Adaptation Requirements , Product Functions , User characteristics ,
Constraints , Assumptions and Dependencies , Apportioning of requirements

The third section of this document includes specific requirements, External
Interfaces and use cases of the Android Data Entry Application Suite for Beeminder
Project.

The fourth section of this document includes data model and description of the
project.

The fifth section of this document includes Behavioral Model and Description ,
Description for software behavior and State Transition Diagrams

The sixth section of this document includes team structure, planning and process
model of the project.

The final section of this document includes conclusion of the project.

2

Change History

Version Number Date Brief
Description

1.0 30.11.2014 Original

3

Table of Content

1. Introduction 9

 1.1 Problem Definition 9

 1.2 Purpose 9

 1.3 Scope 9

 1.4 Definitions, acronyms, and abbreviations 9

 1.5 References 10

 1.6 Overview 10

2. Overall Descriptions 11

 2.1 Product Perspective 11

 2.1.1 System Interfaces 11

 2.1.2 User Interfaces 12

 2.1.3 Hardware Interfaces 12

 2.1.4 Software Interfaces 12

 2.1.5 Communication Interfaces 12

 2.1.6 Hardware Constraints 13

 2.1.7 Operations 13

 2.1.8 Memory Constraints 13

 2.1.9 Application Adaptation Requirements 13

 2.2 Product Functions 13

 2.3 User Characteristics 14

 2.4 Constraints 14

 2.5 Assumptions and Dependencies 15

 2.6 Apportioning of requirements 15

3. Specific Requirements 15

 3.1 External Interfaces 15

 3.2 Functional Requirements 18

 3.2.* Use Case Diagrams 19-

 3.3 Non-functional Requirements 52

 3.3.1 Performance requirement 52

 3.3.2 Design constraints 52

 3.3.2.1 Reliability 52

4

 3.3.2.2 Availability 52

 3.3.2.3 Security 52

 3.3.2.4 Maintainability 52

 3.3.2.5 Portability 53

4. Data Model and Description 53

 4.1 Data Description 53

 4.1.1 Data Objects 53

 4.1.2 Relationships and Complete Data Model 54

5. Behavioral Model and Description 55

6. Planning 56

 6.1 Team Structure 56

 6.2 Estimation (Basic Schedule) 56

 6.3 Process Model 57

7. Conclusion 58

5

Tables

1. Brief Functional Requirements 13

2. Time Tracker database table 54

3. Smart Reminder database table 54

4. Schedule Alarm & Schedule database tables 54

5. Habit Control & Daily Visited Websites database tables 54

6. Team Schedule 56

6

Figures

1. Context Diagram 11

2. Schedule Alarm Mock-up 15

3. Smart Reminder Mock-up 16

4. Start Menu of Applications Suite Mock-up 16

5. Push-Ups Mock-up 17

6. Time Tracker Mock-up 17

7. Habit Control Mock-up 17

8. Use Case Diagram 18

10. Use Case Diagram for Voice Recording 19

11. Use Case Diagram for Add Schedule 19

12. Use Case Diagram for Alarm Voice Selection 20

13. Use Case Diagram for Archive Selected Schedule 21

14. Use Case Diagram for Change Alarm Voice 22

15. Use Case Diagram for Changed recorded voice 22

16. Use Case Diagram for Modify Schedule 23

17. Use Case Diagram for View Graph 24

18. Use Case Diagram for Create weight-loss control task 25

19. Use Case Diagram for Take Photo 25

20. Use Case Diagram for Modify weight-loss control task 26

21. Use Case Diagram for Delete weight-loss control task 27

22. Use Case Diagram for View created schedule alarm task 27

23. Use Case Diagram for View created weight-loss control task 28

24. Use Case Diagram for Create habit control task 29

25. Use Case Diagram for Update Habit control task 30

26. Use Case Diagram for Delete Habit control task 31

27. Use Case Diagram for See today's usage 31

28. Use Case Diagram for See Beeminder graphics 32

29. Use Case Diagram for Active Habit control task 33

30. Use Case Diagram for Deactivate Habit control task 33

31. Use Case Diagram for Create push-up task 34

32. Use Case Diagram for Update push-up task 35

7

33. Use Case Diagram for Delete push-up task 36

34. Use Case Diagram for Activate push-up task 36

35. Use Case Diagram for Deactivate push-up task 37

36. Use Case Diagram for see all created task 38

37. Use Case Diagram for see all commits 39

38. Use Case Diagram for Add new commits 40

39. Use Case Diagram for Choose Beeminder Commits 41

40. Use Case Diagram for Choose free Commits 42

41. Use Case Diagram for Set reminder time 43

42. Use Case Diagram for Choose random reminder 44

43. Use Case Diagram for Update Commits 45

44. Use Case Diagram for Delete Commits 46

45. Use Case Diagram for Submit Commits 47

46. Use Case Diagram for Create new Tag 48

47. Use Case Diagram for Start Tag 49

48. Use Case Diagram for Delete Tag 50

49. Use Case Diagram for Edit Tag 51

50. Class Diagram 55

51. Scrum Agile Process Illustration 57

8

INTRODUCTION

This section introduces software requirement specification (SRS) document for
Easy Data Entry Applications Suite for Beeminder and it provides complete description
of user interaction with system and define all specific information related with system.

1.1 Problem Definition

In our project, we are supposed to implement 6 user -friendly different
applications, which makes specific data entries for the Beeminder easier. Beeminder
provides data entry manually. However, for a user-friendly usage, it is important to make
the submission for data entries easily and enjoyable. Therefore, as team we came
together to implement as many as different small applications as a application suite for
specific data entries to Beeminder.

1.2 Purpose

Our purpose here is to specify all requirements for this project, considering all
components. We will mention about programmer-side, user-side, company-side and
hardware-side requirements and information. Our target customers covers all people
from any geography, who wants to regulate their lives by using the quantified-self
methods.

1.3 Scope

This software will be android platformed phone application for Beeminder users. This
application suite will be designed to help the user to

● Keep track of their push-ups.
● Be dominant in their weight -loss control.
● Remind daily task from to-do-list consciously.
● Help to focus on a selected task during a specific time interval.
● Bound Internet usage time and help user to get rid of from wasting time problem.
● Wake-up and take attendance according to fixed schedule.

1.4 Definitions, acronyms, and abbreviations

Definitions, acronyms, and
abbreviations

Definition

SRS Software Requirement Specification is a

9

document that completely describes all of
the functions of proposed system and the
constraints under which it must
operate.

IEEE Institute of Electrical and Electronics
Engineers.

Android A mobile device operating system
developed by Google Inc

Beeminder It is quantified self plus commitment
application. It is reminders with a sting.

User Application suit user

Database Collection of all the information monitored
by this system

1.5 References

● IEEE. IEEE Std 829-2008 Standard for Software and System Test
Documentation. IEEE Computer Society,2008

● IEEE. IEEE Std 830-1998 Recommended Practice for Software Requirements
Specifications. IEEE Computer Society, 1998

● IEEE. IEEE Std 1016-2009 Standard for Information Technology-System Design-
Software Design Descriptions IEEE Computer Society, 2009

1.6 Overview

This document provides detailed description of the Android Data Entry

Application Suite for Beeminder project and describes general software and hardware
constraints as well as any assumption and dependencies concerning the projects. The
majority of this document focuses on the specific requirements list.
This document consists of seven main parts. First section introduces the SRS document
and gives brief information about document content. Overall information about the
system is provided by the second section. All specific requirements are explained in
detail in the third section and all the internal and the external interfaces are addressed
in the subsequent of the this section. System data model is described in detail with
system database tables in fourth section. Also, table keys and system attributes are
briefly described. UML Class Diagram is used for clarifying behavioral system model for
next section of document. Section six is used for informing about Android Data Entry
Application Suite for Beeminder project's software development method and weekly

10

scheduled team progress planning. This requirements document concludes with
conclusion section of the whole document.

2. Overall Description

This section’s aim is to describe and give details about general factors that play
main role over whole system and to help to understand the requirements by providing a
background.

2.1. Product Perspective

Applications suite will consist of from main three part. The first part will contains
Android application which collect all sub applications on one application and create
application suite. The second part consist of connection with Beeminder. For easy data
entry all sub applications need to make access user account on Beeminder and edit
new data entries. The last part will consist of Database connection. For some sub
applications inside of application suite needs to keep some user entered data for next
usage and increase functionality of application. The project is part of larger system and
it is an dependent product. Due to this fact the application consist of user application
interaction and in background application database and application Beeminder
interactions.

 Figure 1. Context Diagram

2.1.1 System Interfaces

As stated above the applications suite is depend which means all facilities can be
done over Beeminder connection. TCP/IP Socket Protocols will be used for data
communication between Beeminder server and applications suite.

11

2.1.2 User Interfaces

The project interfaces are developed for Android OS platform and all interfaces
will be clear and easy to use. There will be eight main pages and many related sub
pages. Initially, user will be faced with the android based applications suite login page.

 User can login application suite with using only Beeminder account username
and password . Application suite main page will include collection of 6 sub applications
redirect button . System will redirect user to selected sub application main page. There
will be six sub application main pages in terms of Time Tracker, Push Ups, Weight
Loss, Smart Reminder , Habit Control, Schedule Alarm and two or three basic pages
including adding new application tasks , updating and deleting related application tasks,
showing all tasks and their graphics transformed from Beeminder.

2.1.3. Hardware Interfaces

The only hardware interface requirement is Android OS platformed phone device.

2.1.4. Software Interfaces

This section purpose is to specify the required software products. The required
software products and their usage areas over whole project are as belows:

● The applications suite will be based on Android platformed and only be usable on
only Android operating system platformed devices.

● The application will be written on Eclipse IDE and Java, Android libraries will be
used.

● The interaction with Database will not be seen by user. Appropriate Android
libraries will be used for supplying connection with SQLite database.

● The interaction with Beeminder also will not be seen by user and supplied
TCP/IP socket protocols from android libraries will be usable.

● To check application usability for different Android based platform Android SDK
will be used.

2.1.5. Communication Interfaces

The communication between the applications suite and Beeminder will be
provided by TCP/IP protocol. It is supplied inside of android libraries. Database and
applications connection will be made available with usage of database connection
libraries presented inside of android libraries collection.

12

2.1.6. Hardware Constraints

The system will be usable for only Android based platform and the only constraint
will be usage of Android based devices for applications suite.

2.1.7. Operations

Type of operations is explained in User Interfaces section 2.1.2. Due to that it will
not be rewritten again in this section.

2.1.8 Memory constraints

The application will take limited memory usage on phone main memory.
However, there will be no limit on user memory usage for entered tasks.

2.1.9. Application Adaptation Requirements

There will not be any adaptation requirements. The applications suite will be
user-friendly and usage of these applications will be so easy for user and system is
Android based. Anyone who has android platformed device, Beeminder account and
Internet can use this applications suite very easily.

2.2 Product Functions

This part will explain higher specification of system regarding to the main
functionalities that system will supply for sake of clarification. The below drawn table
gives overall brief explanation about sub applications. The detailed explanation will be
provided in the next sections.

Login Provide login to applications suite for
existing Beeminder account

Logout Provide secure logout from applications
suite

Time Tracker Keep time for different work facilities and
make to focus on current work for
selected time interval.

Push Ups Control push-up with set and provide a
feedback with graph taken from
Beeminder

13

Weight Loss Control Make easier data entry with pictures of
scales and inform changes for weight

Smart Reminder Consciously remind tasks from
Beeminder or from existing database and
get your reply and provide a new data
entry.

Habit Control Try to make restriction on Internet usage
with working background and provide
spent time as a new data entry.

Schedule Alarm Provide voice recognized alarm system
and keep track of attendance for added
schedule.

Table 1. Brief Functional Requirements

2.3 User characteristics

The user is expected to be a mid-level smartphone user and be able to use a
Android based platform.

2.4 Constraints

• The user is expected to have a Beeminder account.
• Android framework and Java knowledge is mandatory.
• Developer of mobile platforms is needed to care about memory issues because

of limited memory, that the applications suite will cover.
• The security of the login authentication and store transactions should be provided

by Beeminder security system. The reliability of data communication should be
provided by TCP/IP.

• Changing data entries transformed by Beeminder tasks should be updated by
Beeminder automatically.

14

2.5 Assumptions and Dependencies

Since this is an Android application suite project and it contains many
functionalities and opportunities, some other functionalities may be popular and then
these features can be added to the project in the future for more attractiveness and
more usability and those will affect server database or user interfaces.

2.6 Apportioning of requirements

There will be not any delayed requirements until future version of the system.

3. Specific Requirements

All functional and nonfunctional requirements of the system are described in
detailed in this section. Any designer will be capable of design all system thanks to
these detailed requirements parts.

3.1 External Interfaces

This section supply detailed information about requirements that mentioned in
section 2. Sketched mock-ups describe user interface with required controls.

 Figure 2. Schedule Alarm mock-up

15

16

 Figure 3. Smart Reminder mock-up
Figure 4. Start menu of applications suite

mock-up

17

Figure 5. Push-ups mock-up
Figure 6. Time Tracker mock-up

Figure 7. Habit Control mock-up

3.2 Functional Requirements

18

Figure 8. Use case diagram

3.2.1. Use Case: Voice Recording

Brief Description:

 User can record his voice for schedule alarm application with this use case while
creating new schedule item. The recorded voice will help to disable alarm with voice
recognition.

Step-by-Step Description:

1. Firstly, user successfully logins to application suite.
2. User selects Schedule Alarm button and the system will automatically switch user to
selected application layout.
3. The system will provide a button Add new entry. A click on it will redirect user to a new
menu included Voice recording case.
4. The system will provide voice recording features for user and will keep recorded
voice in the memory of application.

3.2.2. Use Case: Add Schedule

19

Figure 9. Use case diagram for Voice recording

Figure 10. Use case diagram for Add Schedule

Brief Description:

 User can add new schedule item for Schedule Alarm application with this use case.

Step-by-Step Description:

1. Firstly, user successfully logins to application suite.
2. User selects Schedule Alarm button and the system will automatically switch user to
selected application layout.
3. The system will provide a button Add new entry. A click on it will redirect user to a new
menu included Add Schedule case.
4. The system will provide add Schedule features for user and will keep added schedule
in the memory of application.

3.2.3. Use Case: Alarm Voice Selection

Brief Description:

 User can select alarm voice for added new schedule item with this use case and
selected voice will be used as alarm sound.

Step-by-Step Description:

1. Firstly, user successfully logins to application suite.
2. User selects Schedule Alarm button and the system will automatically switch user to
selected application layout.
3. The system will provide a button Add new entry. A click on it will redirect user to a new
menu included Alarm voice selection case.

20

Figure 11. Use case diagram for Alarm voice selection

4. The system will provide alarm voice selection features for user and will keep selected
entry in the memory of application.

3.2.4. Use Case: Archive Selected Schedule

Brief Description:

User can archive selected schedule from settings with this use case. Beeminder doesn't
supply pure delete option for user but archive option is available when you deleted any
entry.

Step-by-Step Description:

1. Firstly, user successfully logins to application suite.
2. User selects Schedule Alarm button and the system will automatically switch user to
selected application layout.
3. The system will provide a button Setting. A click on it will redirect user to a new menu
included Archive Selected Schedule case.
4. The system will provide archive selected schedule features for user and will delete
the entry from alarm list and keep it in Beeminder memory as archive.

21

Figure 12. Use case diagram for Archive Selected Schedule

3.2.5. Use Case: Change Alarm Voice

Brief Description:

User can change alarm sound from settings with this use case.

Step-by-Step Description:

1. Firstly, user successfully logins to application suite.
2. User selects Schedule Alarm button and the system will automatically switch user to
selected application layout.
3. The system will provide a button Setting. A click on it will redirect user to a new menu
included Change Alarm voice case.
4. The system will provide change alarm voice features for user and selected voice will
be updated for selected entry.

3.2.6. Use Case: Change Recorded Voice

22

Figure 13. Use case diagram for Change Alarm voice

Figure 14. Use case diagram for Change recorded voice

Brief Description:

User can change recorded voice from settings with this use case. The next voice
recognition the new changed sound will be used for comparison.

Step-by-Step Description:

1. Firstly, user successfully logins to application suite.
2. User selects Schedule Alarm button and the system will automatically switch user to
selected application layout.
3. The system will provide a button Setting. A click on it will redirect user to a new menu
included Change Recorded Voice case.
4. The system will provide change recorded voice features for user and recorded voice
will be updated for selected entry.

3.2.7. Use Case: Modify Schedule

Brief Description:

User can modify schedule from settings with this use case. It will be supplied for user to
change goal name or do other changes over selected task.

Step-by-Step Description:

1. Firstly, user successfully logins to application suite.
2. User selects Schedule Alarm button and the system will automatically switch user to
selected application layout.

23

Figure 15. Use case diagram for Modify Schedule

3. The system will provide a button Setting. A click on it will redirect user to a new menu
included Modify Schedule case.
4. The system will provide modify schedule features for user and modified schedule will
be updated for selected entry.

3.2.8. Use Case: View Graph

Brief Description:

User can use view graph use case from the main menu of all applications listed in
application suite. This case will provide user to observe graphs for selected tasks.

Step-by-Step Description:

1. Firstly, user successfully logins to application suite.
2. User selects any application from applications suite and the system will automatically
switch user to selected application layout.
3. The system will provide a view graph button. From this button selection , user can
reach graph and can observe weekly, monthly, and yearly track on selected entry.

24

Figure 16. Use case diagram for View Graph

3.2.9. Use Case: Create Weight Control task

Brief Description:

User can create new weight - loss control task with this use case.

Step-by-Step Description:

1. Firstly, user successfully logins to application suite.
2. User selects Weight-loss control button and the system will automatically switch user
to selected application layout.
3. The system will provide Create Weight-loss control task use case. Create a weight-
loss control task will be supplied with the help of Beeminder connection for a user.

3.2.10. Use Case: Take Photo

25

Figure 17. Use case diagram for Create weight-loss control task

Figure 18. Use case diagram for Take photo

Brief Description:

User can add new entry with Take photo button. The photo will be taken from scales and
in background it will converted to a number and added Beeminder account as a new
data for weight-loss goal.

Step-by-Step Description:

1. Firstly, user successfully logins to application suite.
2. User selects Weight-loss control button and the system will automatically switch user
to selected application layout.
3. With the help of Take Photo button user takes photo of his weight from scales.
4. In background taken photo will be converted to a number with the help of optical
character recognition libraries.
5. Generated number will be added Beeminder account as a new entry.

3.2.11. Use Case: Modify weight control task

Brief Description:

User can modify selected weight-loss control task . The changes due to goals can be
edited in this part.

Step-by-Step Description:

1. Firstly, user successfully logins to application suite.
2. User selects Weight-loss control button and the system will automatically switch user
to selected application layout.
3. From setting menu user can achieve modify weight-loss control task.

26

Figure 19. Use case diagram for Modify weight-loss control task

4. User can change or reedit to his goals for selected weight-loss control task.

3.2.12. Use Case: Delete weight control task

Brief Description:

User can delete weight-loss control task. In Beeminder the deletion operation will
archive it and new goal entries for this task will be stopped.

Step-by-Step Description:

1. Firstly, user successfully logins to application suite.
2. User selects Weight-loss control button and the system will automatically switch user
to selected application layout.
3. From setting menu user can achieve delete weight-loss control task.
4. The task will be cleaned from application and kept as archive in users' Beeminder
account.

3.2.13 Use Case: View created schedule alarm tasks

27

Figure 20. Use case diagram for Delete weight-loss control task

Figure 21. Use case diagram for View created schedule alarm tasks

Brief Description:

The list of all created tasks or goals will be shown as a list with brief information related
with tasks while opening Schedule Alarm application. The View created schedule alarm
tasks will be achieved by click on the selected task form list. The wide information will
be supplied with this selection.

Step-by-Step Description:

1. Firstly, user successfully logins to application suite.
2. User selects Schedule Alarm button and the system will automatically switch user to
selected application layout.
3. In main layout the list of tasks will be shown
4. By clicking on selected task will redirect user to new layout and provide wide
information about task for user.
5. View created schedule alarm task is achieved by user.

3.2.14 Use Case: View created weight-loss control tasks

Brief Description:

The list of all created tasks or goals will be shown as a list with brief information related
with tasks while opening Weight-loss Control application. The View created weight-loss
control tasks will be achieved by click on the selected task form list. The wide
information will be supplied with this selection.

Step-by-Step Description:

28

Figure 22. Use case diagram for View created weight-loss control tasks

1. Firstly, user successfully logins to application suite.
2. User selects Weight-loss control button and the system will automatically switch user
to selected application layout.
3. In main layout the list of tasks will be shown
4. By clicking on selected task will redirect user to new layout and provide wide
information about task for user.
5. View created weight-loss control task is achieved by user.

3.2.15. Use Case: Create habit control task

Figure 23. Use case diagram for Create habit control task

Brief Description :

A user can create a new task about daily Internet usage time, and set the time interval
to apply this task. He/she can also give this task a specific name. If the user wants to be
informed when he/she reaches the limit time, he/she can choose these alternatives
here.

Step by Step description :

1. At the main page, user can select the “create a new task”.
2. Here, the user will see a screen to determine the task's time interval, daily time limit
and its name. Here, also he/she can decide whether there will be a notification and/or
alarm, when he/she reaches the limit time or not. By clicking create button, user can
create this task.
3. There will appear success/unsuccessful message in the screen.

29

user

create habit control task

3.2.16 Use Case: Update habit control task

 Figure 24. Use case diagram for Update habit control task

Brief Description :

A user can update an existing task about daily Internet usage time. That is, he/she can
change the time interval to apply this task. He/she can also change this task's name. If
the user wants to be informed when he/she reaches the limit time, he/she can choose to
change these alternatives here.

Step by Step description :

1. At the main page, user can select the “update task”.
2. There will appear a screen which shows all created task names .
3. By selecting one of them, user can change his/her goal time interval, daily time limit,
task's name, by clicking update button. In addition he/she can change his/her decision
about being informed when he/she reaches the daily time limit, by choosing one or more
of the three choices, named “do not inform”, “alarm”, and “notification”.
4. There will appear success/unsuccessful message in the screen.

30

user

update habit control task

3.2.17 Use Case: Delete habit control task

 Figure 25. Use case diagram for Delete habit control task

Brief Description :

A user can delete an existing task here.

Step by Step description :

1. User can choose “delete task ” button at the main page.
2. There will appear a screen which shows all created task names .
3. By choosing one of the names, user can delete whichever he/she wants.

3.2.18 Use Case: See today's usage

 Figure 26. Use case diagram for see today's usage

Brief Description :

A user can see the time of his/her total Internet usage, spent time in each website,
connection and disconnection times through an attractive user interface.

Step by Step description :

31

user

delete habit control task

user

see today's usage

1. At the main page, user can choose “Daily Data” button to see the data of today.

2. There will appear all tasks in the screen, so that user can choose one of them to see
the daily information of this task.

3.2.19. Use Case: See Beeminder graphics

 Figure 27. Use case diagram for See Beeminder graphics

Brief Description :

A user can see a task's all Beeminder graphs on the screen, which includes all times
from beginning of this task to today.

Step by Step description :

1. User will select the “See Beeminder Graph” button at the main page.

2. The user will be directed to a screen, which shows all tasks created before.

3. He/she can choose whichever he/she wants to see the task's Beeminder graphs in
the screen.

32

user

see beeminder graphics

3.2.20. Use Case: Activate habit control task

 Figure 28. Use case diagram for Activate habit control task

Brief Description :

A user can activate a task, whenever he/she wants.

Step by Step description :

1. When the user selects “activate” button at the main page, there appears a new
screen full of all task names.

2. Here, the user can select activate button to activate any task he/she wants, which
probes all other tasks to be deactivated temporarily.

3. There will appear success/unsuccessful message in the screen.

3.2.21. Use Case: Deactivate habit control task

 Figure 29. Use case diagram for deactivate habit control task

Brief Description :

33

user

activate habit control task

user

deactivate habit control task

A user can take a break or deactivate a task for a short time, whenever he/she wants.

Step by Step description :

1. When user clicks the “Deactivate” button at the main page, he/she will be directed to
a page with all task names (activated task is specified if there exists).

2. By clicking the task name, user can deactivate any task he/she wants. There will be
two buttons here. If he/she clicks the deactivate button, it means that today's data will
be sent to Beeminder. For example, if someone else is using the Internet at the current
device, the user can deactivate it temporarily.

3. Here, instead of the “deactivate” button, if user clicks the “take a break” button, this
means, the data will not be sent to Beeminder for a time because the user will take a
break, for example for two weeks duration.

4. There will appear success/unsuccessful message in the screen.

3.2.22. Use case: Create push-up task

Figure 30. Use case diagram for create push-up task

Brief Description :

A user can create a new task about push up amount, and set the time interval to apply
this task. He/she can also give this task a specific name. If the user wants to be
informed when he/she does not satisfy daily requirements, he/she can choose these
alternatives here.

Step by Step description :

1. At the main page, user can select the “create a new task”.

34

user

create push-up task

2. Here, the user will see a screen to determine the task's time interval, and the task's
name. Here, also he/she can decide whether there will be a notification and/or alarm,
when he/she does not satisfy daily requirements. By clicking create button, user can
create this task.
3. There will appear success/unsuccessful message in the screen.

3.2.23. Use case: Update push-up task

Figure 31. Use case diagram for update push-up task

Brief Description :

A user can update an existing task here. That is, he/she can change the time interval to
apply this task. He/she can also change this task's name. If the user wants to be
informed when he/she does not satisfy daily requirements, he/she can choose to
change these alternatives here.

Step by Step description :

1. At the main page, user can select the “update task”.
2. There will appear a screen which shows all created task names .
3. By selecting one of them, user can change his/her goal time interval, task's
name,and make all other possible modifications here. In addition he/she can change
his/her decision about being informed when he/she does not satisfy daily requirements,
by choosing one or more of the three choices, named “do not inform”, “alarm”, and
“notification”.
4. There will appear success/unsuccessful message in the screen.

35

user

update push-up task

3.2.24. Use case: Delete push-up task

Figure 32. Use case diagram for delete push-up task

Brief Description :

A user can delete an existing task here.

Step by Step description :

1. User can choose “delete task ” button at the main page.
2. There will appear a screen which shows all created task names .
3. By choosing one of the names, user can delete, whichever he/she wants.

3.2.25. Use case : Activate push-up task

 Figure 33. Use case diagram for activate push-up task

36

user

delete push-up task

user

activate push-up task

Brief Description :

A user can activate a task, whenever he/she wants.

Step by Step description :

1. When the user selects “activate” button at the main page, there appears a new
screen full of all task names.

2. Here, the user can select activate button to activate any task he/she wants, which
probes all other tasks to be deactivated temporarily.

3. There will appear success/unsuccessful message in the screen.

3.2.26. Use case: Deactivate push-up task

 Figure 34. Use case diagram for deactivate push-up task

Brief Description :

A user can take a break or deactivate a task for a short time, whenever he/she wants.

Step by Step description :

1. When user clicks the “Deactivate” button at the main page, he/she will be directed to
a page with all task names (activated task is specified if there exists).

37

user

deactivate push-up task

2. Here, if user clicks the “take a break” button by choosing an active task, this means,
the data will not be sent to Beeminder for a time because the user will take a break, for
example for two weeks duration.

3. There will appear success/unsuccessful message in the screen.

3.2.27. Use case: See all created tasks

 Figure 35. Use case diagram for see all created task

Brief Description :

A user can see all archived tasks here.

Step by Step description :

1. When user clicks the “See archive” button at the main page, he/she will be directed to
a page with all previous task names.

2. Here, if user clicks the “detailed info” button by choosing a task, this means, he/she
can see all data about it in a new page.

38

user

see all created tasks

3.2.28. Use case: See all commits

Figure 36. Use case diagram See all commits

Brief Description:

This Use Case provides user to see all commits in list format with brief description of
commits in terms of commit name, commit submission date and commit reminder time.
It is enough that the user successfully logins to the system and selects the Smart
Reminder Application button.

Step-by-Step Description:

1. User starts application and successfully login to the system.
2. User clicks “Smart Reminder” button on the system main page and system redirects
the user to Smart Reminder application main page.
3. In this Smart Reminder main page, user can see all commits and their brief
descriptions in terms of commit name, commit submission date and commit reminder
date. User can achieve all commit informations by clicking one of commits list element.

39

user

see all commits

3.2.29. Use Case: Add new Commits

 Figure 37. Use case diagram for add new commits

Brief Description:
User can add new commits with this use case. To add new commits , user must login to
system and and enter the Smart Reminder main page.

Step-by-Step Description:

1.User logins to the system and selects “Smart Reminder” button.
2. User clicks “New Commit” button on the top of Smart Reminder main page and
system redirects user to add new commits page.
3. User initially must choose commit type with clicking “Beeminder commits” or “Free
commits” button.
4. If user selects “Beeminder commits” type, user enters Beeminder username and
password and shows Beeminder task.
5. User selects any of Beeminder task and clicks “Commit” button near the tasks. User
will be add selected Beeminder task as a reminder commit.
6. If user selects “Free commits” type, system redirected user o add new free commits
page.
7. Int his page user can add new free commit by entering commit name, commit
reminder time and then clicks “Commit” button .

40

user

add new commits

3.2.30. Use Case: Choose Beeminder commits

 Figure 38. Use case diagram for choose Beeminder

Brief Description:

This use case diagram provides user to select the Beeminder tasks as a reminder
commit. Smart Reminder application is integrated with Beeminder quantified self
application. With using choose Beeminder commits functionality, user can select all
Beeminder tasks as a Smart Reminder commit. Also, it provides automatic data
submission to Beeminder tasks.

Step-by-Step Description:

1.User logins to the system and selects “Smart Reminder” button.
2. User clicks “New Commit” button on the top of Smart Reminder main page and
system redirects user to add new commits page.
3. User clicks “Beeminder Commits” button on this page and s/he can select tasks on
Beeminder to Smart Reminder commit.

41

user

choose Beeminder commits

3.2.31. Use Case: Choose free commits

 Figure 39. Use case diagram for Choose Free Commit

Brief Description:

When user wants to create new free commits, s/he uses this functionality of the
application. To use this use case, user must login to system, select Smart Reminder
application and click “New Commit” button.

Step-by-Step Description:

1.User logins to the system and selects “Smart Reminder” button.
2. User clicks “New Commit” button on the top of Smart Reminder main page and
system redirects user to add new commits page.
3. User clicks “Free Commits” button on this page and then s/he can add new free
commits.

42

user

choose free commits

3.2.32. Use Case: Set reminder time

Figure 40. Use case diagram for Set Reminder Time

Brief Description:

This use case provides user to set reminder time manually. User sets reminder time
while adding new free commits or updating free commits.

Step-by-Step Description:

1.User login to the system and selects “Smart Reminder” button.
2. User clicks “New Commit” button on the top of Smart Reminder main page and
system redirects user to add new commits page.
3. After entering commit name, user selects reminder time in reminder time field.
4. When user enters the Smart Reminder page, s/he selects commit in the commit list.
5. User clicks “Modify Commit” button on the detailed commit page.
6. User changes reminder time in the reminder time field and clicks “Save” button and
reminder time will be selected manually.

43

user

set reminder time

3.2.33. Use Case: Choose Random Reminder

 Figure 41. Use case diagram for Choose Random Reminder

Brief Description:

This use case provides user to set reminder time as randomly. User can set free
commits reminder type as random when updating or adding free commits. All
Beeminder commits are reminded randomly. Beeminder tasks have reminder date for
each task. According to these reminder date, Smart Reminder reminds randomly this
task to user every day.

Step-by-Step Description:

1.User logins to the system and selects “Smart Reminder” button.
2. User clicks “New Commit” button on the top of Smart Reminder main page and
system redirects user to add new commits page.
3. After entering commit name, user selects clicks “Random Reminder” button and then
clicks “Save” button.
4. When user enters the Smart Reminder page, s/he selects commit in the commit list.
5. User clicks “Modify Commit” button on the detailed commit page.
6. User clicks “Random Reminder” button and clicks “Save” button and reminder time
will be selected as random.

44

user

choose random reminder

3.2.34. Use Case: Update Commits

Figure 42. Use case diagram for Update Commits

Brief Description:

User can update any selected commits.

Step-by-Step Description:

1. User logins to the system and selects “Smart Reminder” button.
2. User clicks “New Commit” button on the top of Smart Reminder main page and
system redirects user to add new commits page.
3. User clicks linked commit area in the commits list.
4. User clicks “Modify Commit” button on the detailed commit page.
5. There are “Commit name” and “Commit reminder time” areas in this field. User can
change these properties and clicks “Save” button. After the commitment changes will
be saved.

45

user

update commits

3.2.35. Use Case: Delete Commits

Figure 43. Use case diagram for Delete Commit

Brief Description:

User can delete commits from Smart reminder using this functionality. To delete any
commit, login to system, enter Smart Reminder application and select commit in the
commits list steps must be successfully accomplished by the user.

Step-by-Step Description:

1.User logins to the system and selects “Smart Reminder” button.
2. User clicks “New Commit” button on the top of Smart Reminder main page and
system redirects user to add new commits page.
3. User clicks linked commit area in the commits list.
4. User clicks “Delete Commit” button on the detailed commit page then commit will be
deleted.

46

user

delete commits

3.2.36. Use Case: Submit Commits

Figure 44. Use case diagram for Submit commit

Brief Description:

Main purpose of the smart Reminder application is to remind commits to user at
determined reminder time or randomly. Smart Reminder application asks to user “Did
you ….(commit name) today?”. User clicks “Yes” or “No” button in the pop-up screen
and commit data will be updated according to this submission. User must have an
system account and at least one commit to use this submission reminder part.

 Step-by-Step Description:

1. User logins to the system and system must be open the background of the android
device.
2. When the achieved reminder time or randomly selected time, system reminds user
and asks to
“ Did you ….(commit name) today?” in pop-up screen.
3. User selects “Yes” button or “No” button in this screen.
4. If user clicks “No” button, pop-up screen will be closed. If commit type is free commit,
commit data saved as not completed and commit will not be asked again in this day. If
commit type is Beeminder commit, commit will be asked again and again during this day
randomly. If time is up, data will be saved as not accomplished.
5. If user selects “Yes” button , pop-up screen will be closed and commit data will be
saved as yes accomplished and commit will not be asked again in this day. If commit
type is Beeminder commit, commit data will be transformed related Beeminder task and
task data will be updated.

47

user

submit commits

3.2.37. Use-Case : Create New Tag

Figure 45. Use case diagram for Create New Tag

Brief Description :

The user can use this case if he successfully logs in the system and clicked on the
“Time Tracker” button. He can create a new tag by this use case. The created tag is
stored in the database of the application and in the list of tags situated in the “Time
Tracker” menu.

Step-by-Step Description:

1. The user select “Time Tracker” button and the system will automatically switch user
to selected application layout.
2. In that layout, the system provides a button “Create New Tag”. In case of pressing
that button he will be directed to a new layout of application
3. In the opened new layout there are one “Create” button and two empty area waiting
to be filled one for “Name Of Tag:” , another for “Duration:”. If the user appropriately fills
them and clicks on the button , the new tag will be stored in the database of the
application and will be added to the list of tags situated in “Time Tracker “ menu.

48

3.2.38. Use-Case : Start Tag

Figure 46. Use case diagram for Start Tag

Brief-Description:

The user can use this case if he successfully logs in the system and clicked on the
“Time Tracker” button. By this use case , the time will start and will end automatically
after passing duration time determined by user himself while creating the tag.

Step-by-Step Description:

1. The user select “Time Tracker” button and the system will automatically switch user
to selected application layout.
2. In that layout,the system provides list of tags where all created tags are arranged. In
the left side of the name of the tag created beforehand by the user himself, the user will
face with “Start Tag” button.
3. Just after clicking on “Start Tag” button , the time will start and after the duration time
determined by the user beforehand when he created the tag it will end.

49

3.2.39. Use-Case : Delete Tag

Figure 47. Use case diagram for Delete Tag

Brief-Description:

The user can use this case if he successfully logs in the system and clicked on the
“Time Tracker” button. By this use case , the created tag will be removed from both the
list of tags and from the database of the application.

Step-by-Step Description:

1. The user select “Time Tracker” button and the system will automatically switch user
to selected application layout.
2. In that layout,the system provides list of tags where all created tags are arranged. In
the right side of the name of the tag created beforehand by the user himself, the user
will face with “Delete Tag” button.
3. Just after clicking on “Delete Tag” button , the tag will be removed from both list of
tags and database of the application.

50

3.2.40. Use-Case : Edit Tag

Figure 48. Use case diagram for Edit Tag

Brief-Description:

The user can use this case if he successfully logs in the system and clicked on the
“Time Tracker” button. By this use case , the name and the duration of the created tag
could be changeable.

Step-by-Step Description:

1. The user select “Time Tracker” button and the system will automatically switch user
to selected application layout.
2. In that layout,the system provides list of tags where all created tags are arranged. In
the right side of both the “Delete Tag” button and the name of the tag created
beforehand by the user himself, the user will face with “Edit Tag” button.
3. If the user clicks on this button , he will be directed to a new layout of application
where he will be able to change both Name and Duration of the tag by changing what
has been written in blanks “Name Of Tag:” and “Duration:” beforehand and pressing
“Save Changes” button.

51

3.3 Non-functional Requirements

3.3.1 Performance requirement

1. Any data entering to Beeminder with connection over any sub applications will return
response not more than max 5 seconds.
2. Any data entering to Database over sub applications will return response not more
than max 5 seconds.
3. Since our appearance should be attractive we should lessen our computation count
as much as possible.

3.3.2 Design constraint

3.3.2.1 Reliability
1. Our application should show exactly the same results when a user wants to see data
about his/her tasks.
2. Mean-time-to-Failure should be at most 12 hours.

3.3.2.2 Availability
1. System should be available 24 hours a day, 7 days a week.
2. In case of any failure, system should recover user and system information by aborting
operation.

3.3.2.3 Security

1. Another user should not be able to see a user's data if the user does not want to
show.

3.3.2.4 Maintainability

1. All documents should explain everything fully and clearly, so that in the future this
application can be understood easily.
2. All codes should be written in a manner that can be understood easily, and it should
be as short as possible and should not contain complex expressions.
3. All codes will be written by using object oriented approach
4. When programming and designing this application suit, it is important to follow all
news about Android devices and software since it improves so fast.

52

3.3.2.5 Portability

1. The application suit should support all possible android based devices

4. Data Model and Description

4.1 Data Description

4.1.1 Data Objects

The system has six database tables: Time_Tracker , Smart_Reminder,
Schedule_Alarm, Schedule, Habit_Control and Daily_Visited_Websites. Tables contents
and details are described below :

Time_Tracker: All tags’ information is stored in this table with “tagID” as a table primary
key, “tag_name” and “tag_duration” are other keys of the table.

Smart_Reminder : Free commits’ information which created by users is collected in this
table in terms of “commitID” as a table primary key,
“commit_name”,commit_reminder_time” and “is_committed”.

Schedule_Alarm: Information about all scheduled alarms is stored in Schedule_Alarm
table including “taskID” and “tableID” primary keys, “task_name”, “alarm_name” , and
“recorded_voice_id” other keys.

Schedule : It is dependent table of Schedule_Alarm table. Schedule information is
stored this dependent table including “tableID” as a foreign key comes from
Schedule_Alarm table, “data”,”time” and “day” other keys.

Habit_Control : It is collection of all habits’ information with “taskID” as a primary
key,”task_name”, “start_time”,”task_deadline” and “is_active” keys.

Daily_Visited_Websites: Some required information about daily visited websites is taken
this table .It depends Habit_Control table with “has” attribute and it stores some
websites information in “websiteID” primary key, “”link”, “enterance_time” ,
“leaving_time” other keys.

53

4.1.2. Relationships and Complete Data Model

54

 HAS

Table 2. Time_Tracker table Table 3. Smart_Reminder table

Table 4. Schedule_Alarm & Schedule tables

Table 5. Habit_Control & Daily_Visited_websites tables

5 Behavioral Model and Description

Figure 49. Class Diagram

55

There will be 8 different classes in our project. When the user enters the
application, he/she can choose either Push-ups, Time_tracker, Habit_Control, Alarm,
Commit or Weight-loss task classes. All of these classes make the desired changes on
the Task class. All of these functions are specified in the class diagram. Application suit
class is the only way for user to reach other classes. In addition, application suit cannot
reach the Task class without reaching one of the other classes, that is, Push-ups,
Time_tracker, Habit_Control, Alarm, Commit or Weight-loss classes.

6. Planning

6.1 Team Structure

 Our team, ARES , consists of four students. Alihuseyn Gulmammadov (1848282),
Songul Abuzar (1678614) , Rufet Eyvazli (1645894), Esragul Korkmaz (1881341).
Actually our project consists of from 6 sub applications. We divided 4 of them among
the group members and the last 2 will be done together.

6.2 Estimation (Basic Schedule)

Till the end of first semester, as a team we are planning to make the 75 percent facilities
available in four sub applications. In the second semester we are planning to complete
all the facilities for whole applications suite.

Team Schedule

Week1 Research about Beeminder Completed

Week2 Research about opponents Completed

Week3 Android beginner tutorials Completed

Week4 Prepared 'User stories & Proposal' Document Completed

Week5 Android beginner tutorial 2 Completed

Week6 Android beginner tutorial 2 Completed

Week7 Prepared Retrospective Document Completed

Week8 Android intermediate tutorial Completed

Week9 Android intermediate tutorial & Project Implementation Completed

Week10 SRS Document Completed

Week11 Prepared Retrospective Document 2 Incomplete

56

Week12 Android advance tutorial & Project Implementation Incomplete

Week13 Project Implementation Incomplete

Week14 Prepared Retrospective Document 2 Incomplete

Week15 SDD Document Incomplete

Week16 Presentation Incomplete

Table 6. Team Schedule

6.3 Process Model

Since apply any change on the project is to easy. Because as a team, we use 'Scrum
Agile' process model. As explanation to scrum agile methods, it has proven to be
successful for small sized projects that can be developed by a small team as we are. In
this methodology there is 'Scrum master' who arranges all meetings and tracks the
backlog of work to be done. During this meetings all team members be aware with any
changes if exists and all process details. It is actually means if any problem occurs, the
whole change on project will be done easily and efficiently.

Figure 50. Scrum Agile Process Illustration

57

30 days

24 h

Working increment
of the software

Sprint Backlog SprintProduct Backlog

7 Conclusion

In conclusion, we have already defined how our applications suite should be and have
given its details. For future in implementation part, there maybe some changes and this
kind of changes will be noted in the update documents.

58

	Preface

