
SOFTWARE DESIGN
DOCUMENT

(v2.0)

 PROJECT:
Visualization of the Human Cognition Using Brain

Data

Group: Kernel Panic

Irmak Doğan 1819242
Esen Aytan 1819036

Zeynep Büşra Çınar 1819804
Kamyar Ghasemlou 1786896

PREFACE
 This document contains the system design information about “Visualization of

the Human Cognition Using Brain Data” project. This document is prepared

according to the “IEEE Standard for Information Technology – Systems Design –

Software Design Descriptions – IEEE Std 1016 – 2009”. This Software Design

Documentation provides a complete description of all the system design and

views of the Project on both client and server side applications. The first section

of this document includes Project Identification, Stakeholders Identification and

requirements, Composition of the developers’ team. The following sections

include document purpose and design viewpoints of the system.

Revision History

Version Date Changed A/D/M Brief
Description

1.0 04/01/2015 - - Initial Version
2.0 01/03/2015 Correction of

some points
Second
Version

*A: Added, M: Modified, D: Deleted

Contents
1 Overview..5

1.1 Scope...5

1.2 Purpose..5

1.3 Intended Audience...5

2 Definitions..6

3 Conceptual Model For Software Design Description...7

3.1 Software Design In Context...7

3.2 Software Design Descriptions Within The Life Cycle..................................7

3.2.1 Influences On Sdd Preparation..7

3.2.2 Influences On Software Life Cycle Products...7

4 Design Description Information Content..8

4.1 Introduction...8

4.2 SDD Identification..8

4.3 Design Stakeholders And Their Concerns..8

4.4 Design Views...8

4.5 Design Viewpoints...9

4.6 Design Elements..9

4.7 Design Overlays...9

4.8 Design Rationale..10

4.9 Design Languages...10

5 Design viewpoints..10

5.1 Introduction...10

5.2 Context viewpoint..11

5.2.1 Design concerns..12

5.2.2 Design elements..12

5.2.3 Example languages...13

5.3 Logical Viewpoint...13

5.3.1 Packet Class...14

5.3.2 Processor Interface..15

5.3.3 Pipeline Class...16

5.3.4 ProcessorManager Class..18

5.3.5 InitBehaviour Class..18

5.3.6 OptimizedPacketRenderer Class..19

5.3.7 Relationships between Classes..20

5.4 Dependency Viewpoint..21

5.5 Composition Viewpoint..23

5.6 Interface Viewpoint..25

5.7 Interaction Viewpoint...29

5.7.1 Loading Data...29

5.7.2 Applying Processors...30

5.7.3 Creating Pipelines..30

5.7.4 Packet Rendering...31

5.7.5 Animation Pipeline...31

5.8 State Dynamics Viewpoint...32

6 Traceability Matrix..33

7 Conclusion..34

1 Overview
1.1 Scope

The software to be produced is a new version of CEREBRA produced by simple

Labs team as senior term project during 2013-2014 academic year. In this project

it is intended to improve the existing CEREBRA application and improve its

usability and features. At the end of the project, an improved version of CEREBRA

will be produced with containing new filters and features.

Unity3D is the game engine in upon which CEREBRA has already been

implemented, thus current project will continue on Unity3D. The new version is

planned to have important improvements such as animation capability for time

series data, special filter to increase comprehensibility, improved data parsing,

improvement of design patterns, etc.

1.2 Purpose
This document describes how CEREBRA will be improved to satisfy the

requirements and structured to implement features identified in the Software

Requirements Specification document prepared by Kernel Panic.

Requirements Specification document determines software, hardware, functional

and nonfunctional requirements decided to be satisfied and gives a general idea

how the system will work. This Document covers the details and different aspects

of the project in a comprehensive way and conceptualizes the overall product

that will be formed precisely.

In the design process, it is intended to design an effective and modular product

that will satisfy the needs and constraints of the project. It is also aimed to

explain the functional, structural and behavioral features of the system by using

specific types of UML diagrams such as class, sequence, state diagrams. In order

to support these diagrams, graphical user interface prototypes are also provided

in the document.

1.3 Intended Audience
This document is intended for both the stakeholders and the developers who

build the system.

1.4 References
1. IEEE. IEEE STD 1016-2009 IEEE Standard for Information Technology – System

Design

– Software Design Descriptions. IEEE Computer Society, 2009.

2. StarUML 5.0 User Guide. http://staruml.sourceforge.net/docs/user-

guide(en)/toc.html

/toc.html

2 Definitions

3
3D 3 dimensional
CSV “Comma Separated Value” file format
fMRI Functional Magnetic Resonance Imaging
GPU Graphics Processing Unit
GUI Graphical User Interface
IDE Integrated Development Environment
IEEE Institute of Electrical and Electronics Engineers
MATLAB Matrix Laboratory
METU Middle East Technical University
MNI Montreal Neurological Institute
RAM Random Access Memory
SRS Software Requirements Specification
SDD Software Design Document
UML Unified Modeling Languages
Unity3D Unity is a cross-platform game creation system developed by Unity

Technologies, including a game engine and integrated
development environment (IDE).

4 Conceptual Model For Software Design Description
4.1 Software Design In Context

The aim of this project is to improve CEREBRA project which visualizes fMRI

data as a 3D graph of nodes. The fMRI data includes the brain response of a

human in response to some particular circumstances (e.g. Picture of a red apple

or when pinched).

The major capabilities of the final visual will be:

 Generation animations for a small (6 step) time series of the fMRI.
 Various filters to suppress voxels or slice the 3D graph for better

understandability.
 MNI conversion and representation inside a real-life brain model.
 Different coloring for different brain regions.

Since the fMRI data is very large and complex, time and space will be main

constraints. It is planned to apply various computer science optimization

concepts to handle such constraints.

The target audience of this project is mostly academicians and medical institutes.

Cognitive state representation and visualization of human brain is fundamentally

important in neuroanatomy, neurodevelopment, cognitive neuroscience and

neuropsychology. And with a tool to visualize and animate it, it is believed to

contribute to the efficiency of those activities.

As mentioned above, project will be implemented in Unity3D Game Engine.

C # will be used as the programming language.

4.2 Software Design Descriptions Within The Life Cycle
4.2.1 Influences On Sdd Preparation

The key software life cycle product that drives a software design is

typically the software requirements specification.

The requirements in the SRS like product perspective, interface

requirements, functional and non-functional requirements and also the

demands of the stakeholders specify the design of the project.

4.2.2 Influences On Software Life Cycle Products
As said before, the key software life cycle product that drives a software

design is typically the software requirements specification. However during

the preparation of this Software Design Description document or the

implementation stage of the project, some requirements may change and

this results in the change of SRS and SDD.

5 Design Description Information Content
5.1 Introduction

This is an SDD document for Visualization of the Human Cognition Using

Brain Data project. Detailed information about our Project design cases is

given with UML diagrams. All along to document, document identification,

diagrams, user views and user viewpoints are provided.

The contents are also going to be explained in this section are as follows:

 Identification of the SDD,
 Identified design stakeholders,
 Identified design concerns,
 Selected design viewpoints, each with type definitions of its allowed design

elements and design languages,
 Design views,
 Design overlays,
 Design rationale

5.2 SDD Identification
This is the Software Design Document which is written on the request of

Ceng 491 instructors to be able to guide the development process of our project.

All sections in this document is written by all of the KernalPanic group members.

The supervisors of this project are Dr. Fatoş Yarman Vural and Asst. Emre Aksan.

This is not the final design document for the project and it can be subject to

change in future. The date of issue of the initial version of this document is

January 01, 2015. For more information, “1.Overview” can be looked at.

5.3 Design Stakeholders And Their Concerns
The design stakeholders for our project are Prof. Dr. Fatoş Yarman Vural and

her research group. Our project is shaped by their research and requirements.

The major concerns of design stakeholders can be listed as:

 They want to see user friendly interface because they want to have easy to

use project.
 They want good performance for the project so that project can work

continuously.
 They want modularity for the project so that it will be easy to insert new

functionality in future.
 They want user manual for the project.
 They want the project to be completed in time.
 They want to be kept informed about the process.

5.4 Design Views
Our project has emerged from a need of an efficient, simple and smooth

animation of brain data and applying some operations to this brain data to make

it more meaningful. In other words some filtering techniques are used to make

brain meaningful.

Design view shows estimated cost, staffing, documenting and scheduling.

Relationships of the classes are easily perceived. A context view is about

determining the services required, a logical view is about drawing the relations

between basic entities, a dependency view and a patterns use view is about

defining the relation between subsystems, an interface view is about giving

insight about how the end product will be, an interaction view is about depicting

the flow of information and an algorithm view is about focusing on the algorithms

used is required.

5.5 Design Viewpoints
In this document, the context viewpoint is about the role of the user in the

system. Then, a logical viewpoint defines the classes and the relationships

between them. Dependency viewpoint is about the relationships of

interconnections and dependencies inside the system. Pattern use viewpoint is

about connection of subsystem into the project. Interface viewpoint is about

relations of the UI modules and a mockup visualization. Interaction viewpoint is

concerned with interactions between several objects. Finally, algorithm viewpoint

explains required algorisms in the project.

5.6 Design Elements
Design choices are made in a way such that it can easily upgrade the

project according to the needs of the stakeholders and users. Each component of

the implementation like functions, variables and classes will be commented such

that, for a further modification on software it will be very easy to understand the

code and improve it.

The main design elements are entities (such as users, process selection,

nodes and edges), attributes (includes name, type, purpose and author of

attributes), relations (association or correspondence among two or more design

entities) and design constraints. These main design elements are defined inside

the related viewpoints in detail in section 5.

5.7 Design Overlays
Design Overlays usually used to add information to the existing views. The

interface viewpoint includes the user interface which enables user to select the

process for brain data. This concept will be explained clearly when necessary in

the design viewpoints section.

5.8 Design Rationale
Design choices are made to improve reusability, sustainability and provide

extensibility. It should be modified according to demands from stakeholders and

users. It should also be prone to change for possible improvements and

requirements changes.

Moreover, Data set characteristics is a the challenging part of this project.

The algorithm and software frameworks must support efficient data handling as

the data sets may consist of +80K voxels and the project is intended to be used

on personal computers with medium computing power. Therefore all of design

decisions should be made by taking this fact into consideration.

Below are some design decisions made to comply with mentioned

constraint and requirements:

5.8.1 Modularity
Processes should be modular and easy to modify/add/remove, for such an

end, processes are defined as independent and in a data oriented fashion and

registered to processesManager. This approach provides safe process

management, when user needs to apply a process to the data, list of registered

processes is obtained from process manager. This ensures that process are

dynamic and easy to update.

5.8.2 Automatic File Detection
With the non-technical user in mind and to increase user-friendliness,

project is designed in such a way to detect file automatically and not require the

user to select data files one by one, Matlab .mat files provide variable names and

a pre-defined config file would provide enough information for CEREBRA to detect

relevant files and load them.

5.8.3 Configurability
Data sets are provided with different characteristics, we have decided to

require a config file for each data set to increase the ease of use for different

data set structures. For example voxel data comes with different variable

names(e.g. XYZ, XYZ_data, XYZ_mat etc.) config file should include the variable

name for voxel data so that project would be able to detect the associated file.

5.9 Design Languages
UML use case diagrams, UML component diagrams, UML class diagrams,

UML sequence diagrams and ER diagrams are used in this documentation.

6 Design viewpoints
6.1 Introduction
 In this part, seven main design viewpoints will be explained.

• Context Viewpoint

• Logical Viewpoint

• Dependency Viewpoint

• Patterns Use Viewpoint

• Interface Viewpoint

• Interaction Viewpoint

• State Dynamics Viewpoint

 During the explanation of these viewpoints, UML diagrams will be used to

increase understandability.

6.2 Context viewpoint
This section of Software Design Description focuses on the services

provided. The context is defined by reference to actors. Context Diagram is

provided in section 5.5 Composition Viewpoint, Diagram 10.

Diagram 1: System Environment

6.2.1 Design concerns
 The use cases provided in this section reveals the offered services for the

actor.

6.2.2 Design elements
Actors

 User: The user that uses the program.

Services

 Load File: The user loads the data taken from fMRI machine.
 Convert To MNI: Loaded voxels coordinates are converted to MNI

coordinates.
 Potato Print: According to taken axis, brain slices are shown separately in

different regions of the screen.
 Voxel Suppression: According to the taken two intensity values, the voxels

within the specified range are shown.
 Show Histogram: During the voxel suppression operation, histogram of

voxel intensity values are shown to the user.
 Hierarchical Mesh Model: Brain meshes are shown according to hierarchical

level.
 Transparency (Template): Transparency of the brain template can be

adjusted by using specified slider.
 Transparency (Voxels): To be able to see inner voxels, transparency of the

outer voxels can be adjusted.
 Four Regions: The user can do selection between four brain lobes. Only the

selected lobes will be visible.
 Tag Anatomic Regions: Showing brain’ anatomic regions in different colors

and naming on tooltip screen.
 Animate Data: If there is suitable data for the animation, animation is

started by using specified GUI element.
 Show Graphics: After the animation, graphics with respect to the brain

regions are shown.
 Save Animation: Before the animation is started, the user select the

specified GUI elements to save animation. Then, the program save the

process as a video file.
 Pause Animation: During the animation process, the user can pause the

animation.
 Show Active Regions: During the animation process, only active regions or

voxels are shown.

6.2.3 Example languages
 In this section, UML Use Case Diagrams are used.

6.3 Logical Viewpoint
 In this viewpoint, the classes that will be used in the project are explained with

their attributes and methods. For each class, there will be a diagram to overview

the class and then tables that visibility of the class diagram are shown in. Also,

definition of each class element is provided. After all classes are explained, the

class diagram that shows relationships between the classes will be drawn. In this

way, classes’ methods and interactions will be explained in detail.

 Because of the fact that this project will be used in a highly active research

area, it is important that novel ideas be implemented easily. It will be achieved

with a highly algorithm and data agnostic approach by project members.

6.3.1 Packet Class
 This class is used as an immediate data format between two Processors.

Packet class encapsulates all data needed by Processors: voxel coordinates, edge

values, etc. It also offers a way to pass named extra data between Processors.

Diagram 2: Packet Class

Name Type/Return
Type

Visibili
ty

Description

VoelCoordinates double[][3] Private This member holds
coordinates of voxels

Edges double[][] Private This member holds edge
matrix

Extras Dictionary<str
ing,Object>

Private Named collection of extra
data

Packet() <<constructor
>>

Public Dummy constructor

Packet(d: Packet) <<constructor
>>

Public Copy constructor

SetExtra<T>(name:string,
data:T)

 T Public Sets an extra with the
given
name and content

GetExtra<T>(name:string,
data:T)

bool Public Gets the extra with the
given
name or returns false

Operator[](name: string) Object Public Shorthand for getting and
setting extras

GetEdges(n: int) double[][] Public Gets the edge matrix

SetEdges(data: double[][]) double[][] Public Sets the edge matrix

GetCoords(n: int) double[][3] Public Gets voxel coordinates

SetCoords(data: double[]
[3])

double[][3] Public Sets voxel coordinates

6.3.2 Processor Interface
 This interface gives definition about in general forms of Processors and how

they could be implemented. Class of Processor is shown below.

Diagram 3: Processor

Diagram 3: Processor Interface

Name Type/Return
Type

Visibility Description

Processor() <<constructo
r>>

Public Dummy Constructor

Processor(arg:
string[])

<<constructo
r>>

Public This should be the
constructor called from
other places

FromArray(arg:
string[])

void Private Sets properties of the
Processor

Process(input:
Packet)

Packet Public The real job is done here

GetProcessorName() string Public Returns internal name for
the Processor

GetInfo() String Public Returns a simple
documentation

Processor Interfaces generates ten different processes. Such as:

 Convert to MNI
 Potato Print
 Voxel Suppression
 Show Histogram
 Hierarchical Mesh Model
 Animate Data
 Pause Animation
 Show Graphics
 Show Active Regions
 Tag Anatomic Regions
 Show Brain Regions(Four Regions)

6.3.3 Pipeline Class

 Chaining Processor operations are happened here. A pipeline is an object that

responsible for controlling the processors. The user can add or remove processes.

Thus, the user can create his/her presets. When a Processor is added to the

Pipeline, Pipeline object checks whether it is the first Processor to be added. And

then, processes will be run orderly to visualize the brain data in a desired way.

Diagram 4: Pipeline Class

Name Type/Ret
urn Type

Visibility Description

processors Processor[
]

Private This is the list of Processors this
Pipeline consist of

Pipeline() <<constr
uctor>>

Public Dummy constructor

Pipeline(rhs:
Pipeline)

<<constr
uctor>>

Public Copy constructor

FromArray(arg:
string[])

void Public Constructs “processors” with
given information

ToArray() String[] Public Saves “processors” list so that it
can be loaded with FromArray

AddProcessor(pr:
Processor)

bool Public Adds a Processor to the list. First
Processor on the list should be
input type.

Run() Packet Public Runs generated Processor
sequence, Returns output of last
Processor

6.3.4 ProcessorManager Class
 Processor selection and generation are managed in this class. This is a static

class and its’ members are all static. Each Processor must be registered with the

ProcessorManager. This class is generated once and used during lifetime of the

system. That’s why, singleton pattern should be applied. We have only one

object from ProcessorManager class which is responsible for process

management.

Diagram 5: ProcessorManager Class

Name Type/Return
Type

Visibilit
y

Description

processors Processor[] Private This is the list of Processors

ProcessManager() <<constructor
>>

Public Static constructor

Register(p:
Processor)

Void Public Register p with
ProcessManager

FromArray(arg:
string[])

Void Public Constructs “processors” with
given information

GetReader(fn:
string)

Processor Public Finds the input Processor that
can read given source.

6.3.5 InitBehaviour Class
This class is responsible for creating a packet to render by applying all

specified filters to the packet. The user loads the data thanks to this class and

also, GUI operation are handled via this class.

Diagram 6: InitBehaviour Class

Name Type/Return
Type

Visibilit
y

Description

processors Processor[] Private This is the list of Processors

LastLoadedPacket Packet Public
Returns Packet which is loaded
lastly.

loadFile(filename:
string)

Void Public
Load file to system with giving
input as a filename.

Start() Void Public To begin initBehavior

 Button_onClick() Void Public
Analyze or filter the data
according to the specified
work for that button.

CreateProcessorAnd
LoadData(filename:
string, opener:
string)

Void Public

After clicked “+” button,
create processor and load data
concern with the process. It
gives as input filename and
opener.

6.3.6 OptimizedPacketRenderer Class
This class is responsible for render the data which was taken from

initBehaviour. During rendering process, the class checks the packetToRenderer if

this packet is for image or animation by looking at the data columns. If there are

more than one column for one voxel, it is an animation packet, then its intensity

values should be changed accordingly.

Diagram 7: OptimizedPacketRenderer Class

Name Type/Ret
urn Type

Visibili
ty

Description

PackettoRenderer Packet Private The packet which will be
rendered by Unity.

Meshes Mesh Private The Unity object which
consist of vertices, triangles,
normal, intensities data.

generateVoxelGeometry(fil
ename: string)

void Public Create voxel in desired
geometry

generateConvexHullGeom
etry()

Void Public Create convex hull in desired
geometry

generateConvexEdgeGeo
metry()

Void Public Create edges in desired
geometry

Start() void Public Start rendering process of the
system

Update() void Public Update the scene with
respect to the delta time.

6.3.7 Relationships between Classes
All these relationship are shown on Class Diagram in the below figure.

Diagram 8: Class Relationship

6.4 Dependency Viewpoint
 In this section of the design document, the relationships of interconnections

and access among entities are specified. These relationships include information

sharing, order of execution and parameterization of interfaces.

 ER diagram below shows the entities and their relationships. They are also

explained in the subsections of the section.

Diagram 9: ER Diagram

 Dependency viewpoint will list the subsystems and explain the

interconnections among them in detail.

 It provides an overall picture of the system entities and their relationships in

order to assess the impact of requirements and design changes. This section

helps maintainers in two ways: System failures or resource bottlenecks can be

resolved by identifying the entities which causes them and development plan can

be prepared by identifying which entities are needed by other entities and which

should be developed first.

 There are seven design entities which are Input, Box, Packet, Processor,

ProcessorManager, LoadFile, Pipeline, and Visualization. Also, visualization is

separated in two parts called animation and image.

There are four design relationships, namely uses, requires, provides, produces.

• requires: In the main loadFile requires input from the user, Pipeline requires

Packet of preprocessed input data and one or more Processors to process Packet.

• provides: Pipeline provides Packet at the end of its process and

ProcessorManager generates processors and provides them for further use.

• produces: loadFile produces Packet, ProcessorManager and Pipeline due to the

input, which includes user choices which effects attributes of these entities.

 Short descriptions of attributes are given below but detailed information about

attributes can be found at section 5.3 Logical Viewpoint.

 Packet
– VoxelCoordinates: Coordinates of the brain voxels.
– Edges: Edge matrix.
 ProcessorManager
– Processors: list of processors.
 PipeLine
– Processors: list of processors.

6.5 Composition Viewpoint
 In this part of the design document, how subsystem will be connected and in

which order their functions will be called is explained. The order of the function

can be seen in Collaboration Diagram. First of all, duties of functions in the

diagram will be explained.

Function Name Function Duty
loadFile() After taken the data by fMRI machine, the function is

called by user to load the data. Then, Input subsystem
is started.

downSampleData() This function is called by Input subsystem to connect
the Filtering subsystem to downsample the given data
to minify it.

quantizeData() This function is called by the Filtering subsystem after
execution of
downSampleData() to reduce the file size and ease the
handling of data. This function does quantization on
input.

showBrain() Filtering subsystem calls this function to connect the
Visualization subsystem after execution of
quantizeData() function. The processed data is shown
as 3D Image by this function. This function uses built-in
Unity3D functions and OpenGL libraries and
implemented functions.

changeDisplay() This function is called if the user adjusts transparency,
MNI coordinates, colors, rotation, potato print, voxel
suppression or zoom or changes the display by clicking
on "Show Side-by-Side", “Hierarchical Mesh Model” or
"Four Regions" buttons. This function cannot be called
before the showBrain() function.

updateDisplay() This function is called by Visualization subsystem to
update the display with respect to specified changes
by the user.

startAnimation() This function is called if there is suitable data for
animation. Visualization subsystem calls this function
to connect Animation subsystem. The processed data
is shown as 3D Animation by this function. This
function uses built-in Unity3D functions and OpenGL
libraries and implemented functions.

changeAnimation() This function is called if the user wants to change

animating data by adjusting transparency, MNI
coordinates, colors, rotation, voxel suppression or
zoom or changes the display by clicking on, “Show
Active Regions”, "Show Side-by-Side", “Hierarchical
Mesh Model” or "Four Regions" buttons. This function
cannot be called before the startAnimation() function.

updateAnimation() This function is called by Visualization subsystem to
update the display with respect to specified changes
by the user.

Diagram 10: Context Diagram

 The function is called with respect to the numbers stated in diagram. Firstly,

first function is called and input data is loaded to the system. Secondly, second

and third functions are called and system is started. After that, fourth function is

called to show the 3D image created with the processed data. Lastly, fifth and

sixth functions are called repeatedly when there is a user interaction until the

program is closed. If the data is suitable to animate, that is, the data is a time

series data, animation is started with seventh function. Then, animation process

continues with user interactions until the program is closed.

6.6 Interface Viewpoint
 Interface viewpoint can be decomposed into three major components.

 First, the data importer module is responsible for importing voxel position

values, voxel intensity values and edges (arclengths). The file format should be

MATLAB file format; however, this module can be extended with ability to handle

other file formats, namely CSV, raw text, etc.

 Second, the filtering module is responsible for preparing data to be shown on

the screen smoothly. This includes down-sampling, quantization e.g. techniques.

The output of this component will be ready-to-draw voxel position parameters,

voxel intensity values and edges (arclengths).

 Thirdly, visualization component will use 3D rendering engine and draw the

image to the screen.

 Lastly, animation component will use GPU and shaders to render 3D animation

to the screen.

This is visualized using UML component diagram below.

Diagram 11: UML component diagram

 Planned user interface is depicted at Figures 5.1, 5.2, 5.3, 5.4 and 5.5. There

will be only one main screen. Left pane is the image plane and user will be able

to interact with this plane to rotate the 3D image. On the right pane, controls for

rotating and zooming will be placed. Transparency for voxels and transparency for

brain template will be customizable through a slider. Filter group lists the filters

available (namely down-sampling, quantization, edge-bundling e.g.). Note that as

the research continues new filters will be added. Filter options can be applied via

“+” and “-” buttons by adding the listview. Region can be selected using a

dropdown menu. Available options will be whole brain, frontal lobe, parietal lobe,

occipital lobe, temporal lobe and limbic lobe. Note that however, these region

options are tentative.

 Our intention for the behavior of these right pane options is as follows. As any

option change occurs, the related action will be triggered instantaneously.

However, as the processing might take some time.

Figure 1: MNI Conversion

Figure 2: Potato Print

 After inserting the Potato Print process Brain Template and Hierarchical Mesh

Model UI is removed from the GUI. “Forward” and “Back” buttons are inserted to

the GUI to display forward and backward slices as quads in the screen. When a

slice is double clicked, the slice will pop up.

Figure 3: Voxel Suppression

Figure 4: Histogram of Voxel Suppression

 While inserting the voxel suppression process, the user can see a MATLAB

histogram of voxel intensity values by clicking the “Show Histogram” button.

After inserting this process, hierarchical mess model UI is removed.

Figure 5: Start Animation

6.7 Interaction Viewpoint
 In this viewpoint, the interaction and the connection between user interface

elements will be explained screen by screen in detail. Thus, the interactions

between these objects and how they communicate should be explained. The

interaction viewpoint is chosen for this purpose.

 In below, interactions happening on operations such as loading data, applying

processors, creating pipelines can be seen. A simple written explanation is given

with diagrams.

6.7.1 Loading Data
 When LoadData function is initiated with a file name, first thing it does is to

open given file.

 After that, it gives control to ProcessorManager via a CanReadFormat call.

ProcessorManager forwards this call to registered "input" type Processors. First

available input Processor is generated with the given filename and added to the

Pipeline. This Pipeline object is then returned.

Diagram 12: Loading Data Sequence Diagram

6.7.2 Applying Processors
 All the processors are bound to Pipeline objects. But, they can be called

without being bound. This flow explains how a Pipeline applies Processors.

Pipeline object will generate a Packet object and follow Processor chain. A

Processor can do whatever it wants on a Packet.

Diagram 13: Applying Processors Sequence Diagram

6.7.3 Creating Pipelines
 This diagram assumes named Processor creation from array.

ProcessorManager finds wanted Processor and forwards call to it. Purpose of this

class is explained in the 5.3.3 Pipeline Class part of the Logical Viewpoint section.

Diagram 14: Creating Pipelines Sequence Diagram

6.7.4 Packet Rendering
 In this diagram, we will show that initBehavior sends the packet to optimized

packet renderer. Then, Optimized packet renderer renders the Packet by using

Unity3d rendering engine.

Diagram 15: Packet Rendering Sequence Diagram

6.7.5 Animation Pipeline
 In this diagram, we will show animation process. Optimized packet renderer

controls the packet. If voxel intensity values include time series data, packet

renderer will animate it. On the other hand, if it includes instance time data that

is there is only one column for intensity values, only 3D image belongs to that

instance time will be shown on screen.

Diagram 16: Animation Pipeline Sequence Diagram

6.8 State Dynamics Viewpoint
 As shown in the diagram below, the application starts with a worker thread

and waits an input brain data which is fMRI data. It analyzes the data and bring it

in compliance with visualization. During the visualization step, user can do same

changes on the data such as normalizing, zooming, converting, rotating, adding

new processes etc. or if the data is a time series data animation process can be

started by the user by clicking the “Animate” button. During the animation state,

the user can pause the animation by clicking “Pause” button. After that, if the

user clicks “Animate” button, the animation resumes. Also, during the animation

state, user can do some changes on the data such as showing active regions,

showing graphics in addition to all filters applied to 3D image. The user can exit

the program in somewhere of the application.

1 Pattern Use Viewpoint
 In this project, factory design pattern is used. The factory method pattern is a

creational pattern which uses factory methods to deal with the problem of

creating objects without specifying the exact class of object that will be created.

The reason of using that, we use different processes for visualizing brain

differently.

Diagram 17: State Transition Diagram

7 Traceability Matrix
UC0
(Sectio
n
2.2.0
In
SRS)

UC1
(Sectio
n
2.2.1
In
SRS)

UC2
(Sec
tion
2.2.
2
In
SRS)

UC3
(Sec
tion
2.2.
3
In
SRS)

UC4
(Sec
tion
2.2.
4
In
SRS)

UC5
(Sec
tion
2.2.
5
In
SRS)

UC6
(Sec
tion
2.2.
6
In
SRS)

UC7
(Sec
tion
2.2.
7
In
SRS)

UC8
(Sectio
n
2.2.8
In
SRS)

UC9
(Sectio
n
2.2.9
In
SRS)

UC10
(Sectio
n
2.2.10
In
SRS)

UC11
(Sectio
n
2.2.11
In
SRS)

UC12
(Sectio
n
2.2.12
In
SRS)

UC13
(Sectio
n
2.2.13
In SRS)

UC14
(Sectio
n
2.2.14
In
SRS)

UC15
(Sectio
n
2.2.15
In SRS)

Diagram 1 X X X X X X X X X X X X X X X X

Diagram 2 X X X X X X X X X X X X X

Diagram 3 X X X X X X X X X X X X X X X X

Diagram 4 X X X X X X X X X X X X X X X X

Diagram 5 X X X X X X X X X X X X X X X X

Diagram 6 X X X X X X X X X X X X X X X X

Diagram 7 X X X X X X X X X X X X X

Diagram 8 X X X X X X X X X X X X X X X X

Diagram 9 X X X X X X X X X X X X X X X X

Diagram
10

X X X X X X X X X X X X X X X X

Diagram
11

X X X X X X X X X X X X X X X X

Figure 1 X X

Figure 2 X X

Figure 3 X X

Figure 4 X X

Figure 5 X X X X

Diagram
12

X X X X X X X X X X X X X

Diagram
13

X X X X X X X X X X X

Diagram
14

X X X X X X X X X X X

Diagram
15

X X X X X X X X X X X X X

Diagram
16

X X X

Diagram
17

X X X X X X X X X X X X X X X X

8 Conclusion
 In this design document, we provide details about the software architecture

and initial design of the project “Visualization of Human Brain Data” and also

implementation details of the project with respect to viewpoints, modules and

data design. This document is intended to be used as a reference to the both

stakeholders defined before in this document and also to the team Kernel Panic.

	1 Overview
	1.1 Scope
	1.2 Purpose
	1.3 Intended Audience
	1.4 References

	2 Definitions
	4 Conceptual Model For Software Design Description
	4.1 Software Design In Context
	4.2 Software Design Descriptions Within The Life Cycle
	4.2.1 Influences On Sdd Preparation
	4.2.2 Influences On Software Life Cycle Products

	5 Design Description Information Content
	5.1 Introduction
	5.2 SDD Identification
	5.3 Design Stakeholders And Their Concerns
	5.4 Design Views
	5.5 Design Viewpoints
	5.6 Design Elements
	5.7 Design Overlays
	5.8 Design Rationale
	5.8.1 Modularity
	5.8.2 Automatic File Detection
	5.8.3 Configurability

	5.9 Design Languages

	6 Design viewpoints
	6.1 Introduction
	6.2 Context viewpoint
	6.2.1 Design concerns
	6.2.2 Design elements
	6.2.3 Example languages

	6.3 Logical Viewpoint
	6.3.1 Packet Class
	6.3.2 Processor Interface
	6.3.3 Pipeline Class
	6.3.4 ProcessorManager Class
	6.3.5 InitBehaviour Class
	6.3.6 OptimizedPacketRenderer Class
	6.3.7 Relationships between Classes

	6.4 Dependency Viewpoint
	6.5 Composition Viewpoint
	6.6 Interface Viewpoint
	6.7 Interaction Viewpoint
	6.7.1 Loading Data
	6.7.2 Applying Processors
	6.7.3 Creating Pipelines
	6.7.4 Packet Rendering
	6.7.5 Animation Pipeline

	6.8 State Dynamics Viewpoint
	1 Pattern Use Viewpoint

	7 Traceability Matrix
	8 Conclusion

