

COMPUTER ENGINEERING

ALGORITHMIC

TRADING

SOFTWARE DESIGN DESCRIPTION

Prepared by MoneyFellas :

ALİ ŞAVKAR 1819879

GÖKÇER YAPAR 1819648

MURAT TARIMER 1819556

ÖMER YAVUZ 1819655

04.01.2015

I

TABLE OF CONTENTS

1. OVERVIEW .. - 1 -

1.1. SCOPE .. - 1 -

1.2. PURPOSE ... - 1 -

1.3. INTENDED AUDIENCE .. - 1 -

1.4. REFERENCES .. - 1 -

2. DEFINITIONS ... - 3 -

3. CONCEPTUAL MODEL FOR SOFTWARE DESIGN DESCRIPTIONS ... - 4 -

3.1. SOFTWARE DESIGN IN CONTEXT ... - 4 -

3.2. SOFTWARE DESIGN DESCRIPTIONS WITHIN THE LIFE CYCLE ... - 5 -

3.2.1. INFLUENCES ON SDD PREPARATION .. - 5 -

3.2.2 INFLUENCES ON SOFTWARE LIFE CYCLE PRODUCTS ... - 5 -

3.2.3. DESIGN VERIFICATION AND DESIGN ROLE IN VALIDATION .. - 5 -

4. DESIGN DESCRIPTION INFORMATION CONTENT ... - 6 -

4.1. INTRODUCTION ... - 6 -

4.2. SDD IDENTIFICATION ... - 6 -

4.3. DESIGN STAKEHOLDERS AND THEIR CONCERNS ... - 6 -

4.4. DESIGN VIEWS ... - 7 -

4.5. DESIGN VIEWPOINTS ... - 7 -

4.6. DESIGN ELEMENTS .. - 8 -

4.6.1. DESIGN ENTITIES ... - 8 -

4.6.1.1. SERVER SYSTEM .. - 9 -

4.6.1.2. CLIENT SYSTEM ... - 9 -

4.6.1.3. ALGORITHMS SERVER SYSTEM .. - 9 -

4.6.1.4. COMMUNICATION COMPONENT.. - 9 -

4.6.1.5. FIX8 FRAMEWORK... - 10 -

4.6.1.6. MONGODB DATABASE .. - 10 -

4.6.1.7. MYSQL DATABASE ... - 10 -

4.6.1.8. JAVAFX SOFTWARE PLATFORM... - 10 -

4.6.1.9. C++ PROGRAMMING LANGUAGE .. - 10 -

4.6.1.10. APACHE SUBVERSION ... - 11 -

4.6.2. DESIGN ATTRIBUTES ... - 11 -

4.6.3. DESIGN RELATIONSHIPS ... - 11 -

4.6.4. DESIGN CONSTRAINTS .. - 12 -

4.7. DESIGN OVERLAYS ...- 12 -

4.8. DESIGN RATIONALE ...- 12 -

II

4.9. DESIGN LANGUAGES ...- 12 -

5. DESIGN VIEWPOINT .. - 13 -

5.1. INTRODUCTION ...- 13 -

5.2. CONTEXT VIEWPOINT..- 13 -

5.2.1. DESIGN CONCERNS ... - 13 -

5.2.2. DESIGN ELEMENTS ... - 14 -

5.2.2.1. LOGIN SCREEN USE CASE DIAGRAM ... - 14 -

5.2.2.1.1. ENTER USERNAME USE CASE DIAGRAM ... - 15 -

5.2.2.1.2. ENTER PASSWORD USE CASE DIAGRAM ... - 15 -

5.2.2.1.3. FORGOT YOUR PASSWORD USE CASE DIAGRAM .. - 15 -

5.2.2.1.4. LOGIN USE CASE DIAGRAM ... - 16 -

5.2.2.2. MAIN SCREEN USE CASE DIAGRAM .. - 16 -

5.2.2.2.1. SELECT ACTIVE TRADE USE CASE DIAGRAM .. - 17 -

5.2.2.2.2. STOP/RESUME TRADE USE CASE DIAGRAM .. - 17 -

5.2.2.2.3 SIMULATE USE CASE DIAGRAM .. - 17 -

5.2.2.2.4. SHOW TRADE LOG USE CASE DIAGRAM .. - 18 -

5.2.2.2.5. SHOW TRADE DETAILS USE CASE DIAGRAM ... - 18 -

5.2.2.2.6. SHOW PORTFOLIO USE CASE DIAGRAM.. - 18 -

5.2.2.2.7. SHOW STOCK EXCHANGE MARKET DATE USE CASE DIAGRAM ... - 19 -

5.2.2.2.8. SELL/BUY TRADE USE CASE DIAGRAM .. - 19 -

5.2.2.2.9. OPTION MENU USE CASE DIAGRAM ... - 19 -

5.2.2.2.10. CREATE NEW TRADE USE CASE DIAGRAM .. - 20 -

5.2.2.3. NEW TRADE SCREEN USE CASE DIAGRAM .. - 20 -

5.2.2.3.1. SELECT TRADE KIND USE CASE DIAGRAM ... - 21 -

5.2.2.3.2. ENTER EXPIRATION DATE USE CASE DIAGRAM ... - 21 -

5.2.2.3.3. ENTER SIZE USE CASE DIAGRAM ... - 21 -

5.2.2.3.4. SELECT STRATEGY USE CASE DIAGRAM... - 22 -

5.2.2.3.5. START TRADE USE CASE DIAGRAM.. - 22 -

5.2.2.3.6. CANCEL TRADE USE CASE DIAGRAM ... - 22 -

5.2.2.4. LOG SCREEN USE CASE DIAGRAM ... - 23 -

5.2.3. EXAMPLE UML LANGUAGE ... - 24 -

5.2.4. DESIGN CONSTRAINTS .. - 24 -

5.2.5. DESIGN RELATIONSHIPS ... - 25 -

5.3. COMPOSITION VIEWPOINT ...- 26 -

5.3.1. DESIGN CONCERNS ... - 26 -

5.3.2. DESIGN ELEMENTS ... - 26 -

5.3.3. EXAMPLE UML LANGUAGE ... - 29 -

5.4. LOGICAL VIEWPOINT ...- 30 -

5.4.1. DESIGN CONCERNS ... - 30 -

5.4.2. DESIGN ELEMENTS ... - 30 -

III

5.4.2.1. Users NAMESPACE .. - 30 -

5.4.2.1.1. Account ... - 30 -

5.4.2.2. Trades NAMESPACE .. - 31 -

5.4.2.2.1. Trade ... - 31 -

5.4.2.2.2. TradeOrder .. - 32 -

5.4.2.2.3. MarketData ... - 32 -

5.4.2.3. GUI PACKAGE .. - 33 -

5.4.2.3.1. DisplayRunner ... - 33 -

5.4.2.3.2. MainController .. - 34 -

5.4.2.3.3. LoginController.. - 35 -

5.4.2.3.4. OpenPosition ... - 36 -

5.4.2.4. Database NAMESPACE .. - 37 -

5.4.2.4.1. DBController.. - 37 -

5.4.2.4.2. FIXDATARepositoryControllerDB .. - 37 -

5.4.2.4.3. AccountControllerDB .. - 38 -

5.4.2.4.4. TradeLogControllerDB ... - 38 -

5.4.2.5. Strategy NAMESPACE .. - 39 -

5.4.2.5.1. AlgoController ... - 39 -

5.4.2.6. Communication NAMESPACE ... - 39 -

5.4.2.6.1. SocketCommunication .. - 39 -

5.4.2.6.2. FIX ... - 40 -

5.4.2.7. CppComponent NAMESPACE .. - 40 -

5.4.2.7.1. CppServer .. - 40 -

5.4.2.7.2. CppClient ... - 41 -

5.4.2.8. JavaComponent PACKAGE .. - 42 -

5.4.2.8.1. JavaClient .. - 42 -

5.4.2.8.2. JavaServer ... - 43 -

5.4.3. EXAMPLE UML LANGUAGE ... - 44 -

5.5. INTERFACE VIEWPOINT ...- 45 -

5.5.1 DESIGN CONCERNS .. - 45 -

5.5.2. DESIGN ELEMENTS ... - 45 -

5.5.3. EXAMPLE UML LANGUAGE ... - 47 -

5.6. INTERACTION VIEWPOINT ...- 48 -

5.6.1. DESIGN CONCERNS ... - 48 -

5.6.2. DESIGN ELEMENTS ... - 49 -

5.6.2.1. LOGIN/LOGOUT SEQUENCE DIAGRAM ... - 49 -

5.6.2.2. SCREEN REPLACING SEQUENCE DIAGRAM ... - 50 -

5.6.2.3. RECEIVING PORTFOLIO SEQUENCE DIAGRAM .. - 51 -

5.6.2.4. OPENING NEW TRADE DIALOG SEQUENCE DIAGRAM .. - 52 -

5.6.2.5. C++ TRADE CREATION AND FIX COMMUNICATION SEQUENCE DIAGRAM ... - 53 -

5.6.2.6. ALGORITHM CHOICE SEQUENCE DIAGRAM .. - 55 -

IV

5.6.2.7. DISPLAY DETAILED INFORMATION ABOUT A TRADE SEQUENCE DIAGRAM ... - 56 -

5.6.3. EXAMPLE UML LANGUAGES ... - 56 -

5.7. STATE DYNAMICS VIEWPOINT ..- 57 -

5.7.1. DESIGN CONCERNS ... - 57 -

5.7.2. DESIGN ELEMENTS ... - 57 -

5.7.3. EXAMPLE LANGUAGES ... - 59 -

5.8. RESOURCE VIEWPOINT ...- 59 -

6. PLANNING .. - 60 -

6.1. TEAM STRUCTURE ...- 60 -

6.2. ESTIMATION (BASIC SCHEDULE) ..- 60 -

6.3. PROCESS MODEL ...- 61 -

7. CONCLUSION .. - 61 -

V

TABLES

TABLE 1 - ABBREVIATIONS, ACRONYMS OR DEFINITIONS 3

TABLE 2 - EXPLANATIONS ABOUT MAIN STATES OF AlgorithmicTrader 58

VI

FIGURES

FIGURE 1 - LOGIN SCREEN USE CASE DIAGRAM .. 14

FIGURE 2 - ENTER USERNAME USE CASE DIAGRAM 15

FIGURE 3 - ENTER PASSWORD USE CASE DIAGRAM 15

FIGURE 4 - FORGOT YOUR PASSWORD USE CASE DIAGRAM 15

FIGURE 5 - LOGIN USE CASE DIAGRAM ... 16

FIGURE 6 - MAIN SCREEN USE CASE DIAGRAM .. 16

FIGURE 7 - SELECT ACTIVE TRADE USE CASE DIAGRAM 17

FIGURE 8 - STOP/RESUME TRADE USE CASE DIAGRAM 17

FIGURE 9 - SIMULATE USE CASE DIAGRAM ... 17

FIGURE 10 - SHOW TRADE LOG USE CASE DIAGRAM 18

FIGURE 11 - SHOW TRADE DETAILS USE CASE DIAGRAM 18

FIGURE 12 - SHOW PORTFOLIO USE CASE DIAGRAM 16

FIGURE 13 - SHOW STOCK EXCHANGE MARKET DATE USE CASE DIAGRAM 19

FIGURE 14 - SELL/BUY TRADE USE CASE DIAGRAM 19

FIGURE 15 - OPTION MENU USE CASE DIAGRAM .. 19

FIGURE 16 - CREATE NEW TRADE USE CASE DIAGRAM 20

FIGURE 17 - NEW TRADE SCREEN USE CASE DIAGRAM 20

FIGURE 18 - SELECT TRADE KIND USE CASE DIAGRAM 21

FIGURE 19 - ENTER EXPIRATION DATE USE CASE DIAGRAM 21

FIGURE 20 - ENTER SIZE USE CASE DIAGRAM ... 21

FIGURE 21 - SELECT STRATEGY USE CASE DIAGRAM 22

FIGURE 22 - START TRADE USE CASE DIAGRAM ... 22

FIGURE 23 - CANCEL TRADE USE CASE DIAGRAM .. 22

FIGURE 24 - LOG SCREEN USE CASE DIAGRAM .. 23

FIGURE 25 - COMPLETE USE CASE DIAGRAM OF ALGORITHMICTRADER 24

FIGURE 26 - COMPOSITION DIAGRAM OF ALGORITHMICTRADER 29

FIGURE 27 - CLASS DIAGRAM OF ALGORITHMICTRADER 44

FIGURE 28 - LOGIN SCREEN OF ALGORITHMICTRADER ... 46

FIGURE 29 - NEW TRADE SCREEN OF ALGORITHMICTRADER 46

FIGURE 30 - MAIN SCREEN OF ALGORITHMICTRADER .. 47

FIGURE 31 - LOGIN/LOGOUT SEQUENCE DIAGRAM 49

FIGURE 32 - SCREEN REPLACING SEQUENCE DIAGRAM 50

FIGURE 33 - RECEIVING PORTFOLIO SEQUENCE DIAGRAM 51

FIGURE 34 - OPENING NEW TRADE DIALOG SEQUENCE DIAGRAM 52

VII

FIGURE 35 - C++ TRADE CREATION AND FIX COMMUNICATION SEQUENCE

DIAGRAM ... 53

FIGURE 36 - ALGORITHM CHOICE SEQUENCE DIAGRAM 55

FIGURE 37 - DISPLAY DETAILED INFORMATION ABOUT A TRADE SEQUENCE

DIAGRAM ... 56

FIGURE 38 - STATE DIAGRAM OF THE SYSTEM ... 59

FIGURE 39 - AGILE SOFTWARE DEVELOPMENT METHOD REPRESENTATION 61

ALGORITHMIC TRADING MoneyFellas

- 1 -
Software Design Description
Version 1.o

1. OVERVIEW

This software design document presents detailed information about

implementation of the software. This detailed information are given in next

chapters of this document with the aid of exhaustive explanations, class diagrams,

sequence diagrams, use case diagrams etc.

1.1. SCOPE

This document is a guideline for implementation of the software. It gives extensive

explanations and solutions related to the project. By using UML diagrams such as

use case and class diagrams, fundamental structure of the software are presented

clearly. Therefore, this document serves clear comprehension of how the software

will be implemented.

The contents mentioned in this document do not cover completely functional

software since there might be certain presumes about process. Thus, there may

be some modifications about these assumptions during implementation phase of

the project.

1.2. PURPOSE

 This software design description document aims to explain the goals,

characteristics and interfaces of the software. Also it describes constraints under

which the system should perform, how the software will operate and what is

expected to do from the system. The functional and non-functional requirements

mentioned in SRS constitute a basis for implementation phase. This document

describes how these requirements will be realized through the software.

1.3. INTENDED AUDIENCE

The intended audience for this document is both stakeholders and the developers

of the project.

1.4. REFERENCES

The resources listed below are references used in requirement analysis:

IEEE Standard Documents:

 [1] IEEE Standard for Information Technology – Systems Design – Software

Design Descriptions – IEEE Std. 1016 – 2009.

ALGORITHMIC TRADING MoneyFellas

- 2 -
Software Design Description
Version 1.o

 [2] StarUML 5.0 User Guide. (2005). Retrieved from

http://staruml.sourceforge.net/docs/user-guide(en)/toc.html

 [3] Hull, J. (2009). Options, futures, and other derivatives; seventh edition (7th

edition). Upper Saddle River, N.J.: Prentice Hall.

 [4] Using Genetic Algorithms To Forecast Financial Markets. (n.d.). Retrieved

November 30, 2014, from http://www.investopedia.com/articles/financial-

theory/11/using-genetic-algorithms-forecast-financial-markets.asp

 [5] Binary option. (2014, November 29). Retrieved November 30, 2014, from

http://en.wikipedia.org/wiki/Binary_option

 [6] RELEASE: Fraudadv_binaryoptions. (n.d.). Retrieved November 30, 2014,

from http://www.cftc.gov/PressRoom/PressReleases/fraudadv_binaryoptions

 [7] FIX Trading Community. (n.d.). Retrieved November 30, 2014, from

http://www.fixtradingcommunity.org/

 [8] Bond Option Definition | Investopedia. (n.d.). Retrieved November 30,

2014, from http://www.investopedia.com/terms/b/bondoption.asp

 [9] Agile and Scalable. (n.d.). Retrieved January 3, 2015, from

http://www.mongodb.org/

 [10] QuickFIX. (n.d.). Retrieved January 3, 2015, from

http://www.quickfixengine.org/

 [11] High performance FIX protocol apps with fix8 (n.d.). Retrieved January 3,

2015, from http://www.fix8.org/

 [12] QuantLib: A free/open-source library for quantitative finance. (n.d.).

Retrieved January 3, 2015 from http://quantlib.org/index.shtml

 [13] JavaFX 2 Certified System Configurations. (n.d.). Retrieved January 3,

2015, from

http://www.oracle.com/technetwork/java/javafx/downloads/supportedconfigu

rations-1506746.html

 [14] JavaFX. (n.d.). Retrieved January 3, 2015, from

http://en.wikipedia.org/wiki/JavaFX

 [15] AlgoTrades - Algorithmic Trading Strategies - Algo Trading - Futures

Trading System - Trading Algorithms - Automated Trading Systems -

Quantitative Trading Strategies. (n.d.). Retrieved January 3, 2015, from

http://www.algotrades.net/

 [16] Apache Subversion. (n.d.). Retrieved January 3, 2015, from

http://en.wikipedia.org/wiki/Apache_Subversion

http://staruml.sourceforge.net/docs/user-guide(en)/toc.html
http://www.investopedia.com/articles/financial-theory/11/using-genetic-algorithms-forecast-financial-markets.asp
http://www.investopedia.com/articles/financial-theory/11/using-genetic-algorithms-forecast-financial-markets.asp
http://en.wikipedia.org/wiki/Binary_option
http://www.cftc.gov/PressRoom/PressReleases/fraudadv_binaryoptions
http://www.fixtradingcommunity.org/
http://www.investopedia.com/terms/b/bondoption.asp
http://www.mongodb.org/
http://www.quickfixengine.org/
http://www.fix8.org/
http://quantlib.org/index.shtml
http://www.oracle.com/technetwork/java/javafx/downloads/supportedconfigurations-1506746.html
http://www.oracle.com/technetwork/java/javafx/downloads/supportedconfigurations-1506746.html
http://www.algotrades.net/

ALGORITHMIC TRADING MoneyFellas

- 3 -
Software Design Description
Version 1.o

2. DEFINITIONS

ABBREVIATION,

ACRONYM OR

DEFINITION

EXPLANATION

Asset An economic resource

BIST

The sole exchange entity of Turkey combining the

former Istanbul Stock Exchange (ISE) (stanbul Menkul

Kıymetler Borsası, IMKB), the Istanbul Gold

 Exchange(İstanbul Altın Borsası, İAB) and the

Derivatives Exchange of Turkey(Vadeli İşlem Opsiyon

Borsası,VOB) under one umbrella.

Database A collection of related data

Database Query A piece of code (a query) that is sent to a database in

order to get information back from the database.

DBMS A software package/system to facilitate the creation and

maintenance of a computerized database

Financial

transaction

An agreement, communication, or movement carried

out between a buyer and a seller to exchange an asset

for payment.

FIX Protocol An electronic communications protocol for international

real-time exchange of information related to the

securities transactions and markets.

GUI Graphical User Interface

IEEE Institute of Electrical and Electronics Engineers

Message
Persister

A part of software that sends messages repetitively

Portfolio A financial term denoting a collection of investments

held by an investment company, hedge fund, financial

institution or individual.

Security A tradable financial asset of any kind

SSL Secure Socket Layer

Stock A type of security that signifies ownership in a

corporation and represents a claim on part of the

corporation's assets and earnings.

ALGORITHMIC TRADING MoneyFellas

- 4 -
Software Design Description
Version 1.o

Trade An exchange of a security (stocks, bonds, commodities,

currencies, derivatives or any valuable financial

instrument) for “cash"

Option A contract that gives the buyer the right, but not the

obligation, to buy or sell an underlying asset at a specific

price on or before a certain date

UML Unified Modelling Language

TABLE 1: ABBREVIATIONS, ACRONYMS OR DEFINITIONS

3. CONCEPTUAL MODEL FOR SOFTWARE DESIGN DESCRIPTIONS

 The conceptual model contains main terms and concepts of the project used

during preparation of the SDD context. Also it includes the stakeholders who use

them, and how these terms and concepts are used.

3.1. SOFTWARE DESIGN IN CONTEXT

 The aim and intended use of the final product is to trade with BIST by using

related algorithm which is chosen according to trading option. In order to realize

this goal, object oriented paradigm in a modular fashion is aimed to be used during

implementation of this project. Software structure is designed by considering

modularity property in all aspects and that can be observed in class diagram

clearly. Especially, following two issues are constructed based upon modularity

principle in design of the software. Firstly, algorithms can be enlarged in terms of

content and number in the software; therefore, new trading choices are served to

the users of the product. Secondly, interface can be changed by developers easily

according to users’ requirements since JavaFX based structure of the system

supports modularity principle. Besides, adaptability principle is guarded

throughout design. The final software product is aimed to run on Ubuntu, Windows

and MacOS. This cross-platforms supporting property is the most explicit

characteristics of adaptability principle used in design of the product. In addition

to these properties, FIX protocol, JavaFX, MongoDB and several required libraries

will be used in development process.

ALGORITHMIC TRADING MoneyFellas

- 5 -
Software Design Description
Version 1.o

3.2. SOFTWARE DESIGN DESCRIPTIONS WITHIN THE LIFE CYCLE

3.2.1. INFLUENCES ON SDD PREPARATION

 Software requirements specification document of this project is fundamental

for preparation of this software design description document.

3.2.2 INFLUENCES ON SOFTWARE LIFE CYCLE PRODUCTS

 This project is a client-server application. All of the necessary calculations

and other performance required background operations will be performed on C++

part and users will be informed via JavaFX interface. Java and C++ parts act as

server-client applications. Likewise, same connection logic can be considered to

exist between C++ part of the software and BIST server via network and FIX

protocol. C++ part of the project is the most critical section due to performance

requirements; therefore, great attention should be paid during implementation of

this part. Because of this structure of the software, both C++ and Java(GUI) parts

of the software should be developed in parallel to control compatibility of these

parts in lifecycles.

 The simplest accessible trading algorithm will be implemented at first step

since financial algorithms are very deep research area in algorithmic trading field.

Therefore, parts related to algorithms will not be focused on initially. All in all, we

aim to implement C++ and Java parts, then related connections will be established

and finally, implementation of several algorithms will be performed.

3.2.3. DESIGN VERIFICATION AND DESIGN ROLE IN VALIDATION

When user starts the application, he/she is waited for entering username and

password. Software checks them to match the ones in database. These are

required for successful login. User can create new trade when he/she is in main

screen. To achieve this, the user is expected to fulfill necessary fields in Java

interface and then these are sent to C++ part via socket connection. Therefore,

request of the new trade can be prepared after performing of suitable algorithm

then this prepared trade order is sent to BIST in server side of the application.

After this, BIST is expected to return a verification message about sent trade order.

Upon this, information about current status of the trade and related shares of that

trade is sent to Java interface to be displayed on screen. These steps define

successful execution of buy/sell trade order according to user’s trading choice.

ALGORITHMIC TRADING MoneyFellas

- 6 -
Software Design Description
Version 1.o

Each action performed in execution of the application is recorded to database

MongoDB as logs. As a result of this, security of our project is guaranteed.

4. DESIGN DESCRIPTION INFORMATION CONTENT

4.1. INTRODUCTION

 In this section of the SDD, it is intended to give necessary information about

how the design of the software will be explained in the following sections. SDD

identification information, identified design stakeholders, identified design

concerns will be stated. Selected design viewpoints, each with type definitions of

its allowed design elements and design languages, design view, design overlays

and design rationale will be explained as well.

4.2. SDD IDENTIFICATION

 This is the initial Software Design Description for the project Algorithmic

Trading. This SDD is completed at the date of 04.01.2015. Note that this SDD is

not a final document for this project, some modifications can be carried out during

implementation of the software. The organization name for this SDD MoneyFellas

which consists of Ali Şavkar, Gökçer Yapar, Murat Tarımer and Ömer Yavuz. Doctor

Selim Temizer and Assistant Mehmet Çelik are supervisors of our project. Design

information about Algorithmic Trading constitutes scope of this document. UML

diagrams will be used primarily to explain the design viewpoints.

This Software Design Description document is prepared according to STD;

IEEE 1016-2009.

4.3. DESIGN STAKEHOLDERS AND THEIR CONCERNS

 Doctor Selim Temizer, Assistant Mehmet Çelik and other CENG 490 staff are

the design stakeholders of this SDD document. Professor Ahmet Coşar is one of

the instructors of the CENG 490 and he is our official supervisor. Assistant Mehmet

Çelik is one the teaching assistants of CENG 490 course at Middle East Technical

University and he is the one who is responsible for our team. Each week, a meeting

is arranged by participating of Assistant Mehmet Çelik and our team. Thus,

important feedbacks can be able to get from him about development process. He

can be considered as main contact between CENG 490 staff and our team

MoneyFellas.

ALGORITHMIC TRADING MoneyFellas

- 7 -
Software Design Description
Version 1.o

4.4. DESIGN VIEWS

 The software will be implemented by using object oriented paradigm which

enables to form modular structure; thus, the stakeholders can add new properties

or can remove any unwanted ones from product. Since object oriented paradigm

is used as design pattern, any update can be integrated without too much effort.

User will see login screen first, after successful login attempt, they will see main

screen of AlgorithmicTrader. When user initiates a trade, trade order will be sent

from Java part to C++ part of the software. Then C++ prepares FIX message data

according to the trade order and sends it to BIST. C++ parts communicate with

BIST via FIX protocol; also, it sends data to Java interface to draw graphics. By

the way, each trade action and related shares values in time will be recorded to

database to ensure safety.

 Product context is specified and restricted to limitations which are

mentioned in SRS document in this project. Diagrams explain and support logical

view of the software in following sections of the document. Therefore, relationships

between modules or classes of the software can be understood clearly. Besides,

possible future problems and how the information is stored and shared among the

users are shown in dependency and information viewpoints. Lastly, actions’ flow

and transitions of states are shown in state dynamic views.

 As a result, context, dependency, logical, patterns use, interface, state

dynamics and interaction views are used as design views in this SDD document.

Note that these design views correspond to design viewpoints in the following

section 4.5. Each design view governed by a design viewpoint.

4.5. DESIGN VIEWPOINTS

Context viewpoint describes the relationships, dependencies, and

interactions between our software product and its environment which consists of

user, BIST and other external entities with which it interacts. Besides it shows

what AlgorithmicTrader software does and cannot do and where the boundaries

are between our software and the outside world.

 Dependency viewpoint provides overall picture of the design subject in order

to assess the effect of the requirements or design changes in the project.

Interconnection of classes or modules and sharing of resources are main concerns

in this viewpoint. UML composition diagram is used to explain this viewpoint in

following parts of the document.

ALGORITHMIC TRADING MoneyFellas

- 8 -
Software Design Description
Version 1.o

 Logical viewpoint is used to address development and reuse of adequate

abstractions and their implementations in the project. Static structure which are

classes, interfaces and their implementations are main concerns. Also reuse of

types and implementations can be said as main concern. UML class diagram is

used to explain this viewpoint in following parts of the document.

 Patterns use viewpoint addresses design ideas as collaboration patterns

involving abstracted roles and connectors in the project. Reuse of patterns is the

main concern. UML composite structure diagram is used to explain this viewpoint

in following parts of the document.

 Interface viewpoint provides information about the means to know how to

correctly use the services provided by the design subject for designers,

programmers and testers in the project. Definitions and access for services are the

main concerns. UML component diagram is used to explain this viewpoint in

following parts of the document.

 State dynamics viewpoint explains reactive systems and systems whose

internal behavior is of interest in our system. Dynamic state transformation is the

main concern. UML state machine diagram is used to explain this viewpoint in

following parts of the document.

 Interaction viewpoint defines strategies for interaction among modules,

classes and other entities in the system. Communication of objects and messaging

are the main concerns. UML sequence diagram is used to explain this viewpoint in

following parts of the document.

4.6. DESIGN ELEMENTS

A design element is any item occurring in a design view. A design element

may be any of the following subcases: design entity, design relationship, design

attribute, or design constraint.

The type of each design element shall be introduced within exactly one

design viewpoint definition. A design element may be used in one or more design

views.

4.6.1. DESIGN ENTITIES

Design entities capture key elements of a software design.

ALGORITHMIC TRADING MoneyFellas

- 9 -
Software Design Description
Version 1.o

4.6.1.1. SERVER SYSTEM

This system constitutes the most important part of the backside of our

product. Almost all necessary calculations and connections between other servers

are handled in this part. For example, processes like user and admin connection,

getting information from packages and distributing them to related parts are

handling in this part. Therefore, this part of the product can be thought like a

bridge which link all packages of the program to each other.

4.6.1.2. CLIENT SYSTEM

Client side of the software is designed for cross platforms which are Linux,

Windows and Mac OS. This part is actually server side interface of our software

implemented by JavaFX. By using this system, user can supply required

information which are necessary to execute desired processes to server side. In

conclusion, users are capable of managing related server side parts thanks to this

client interface system without knowing anything in detail about what is happening

at server side.

4.6.1.3. ALGORITHMS SERVER SYSTEM

This system is the subsystem of program server system mentioned in

4.6.1.1. Main logic of this part is manipulation of stored stock exchange market

data to make estimation about next sell/buy order. Thanks to algorithms, our

product tries to make most accurate decision according to user choices in this

part of the software. As a result of this, one of the purpose of our product which

is making best investment according to user choices is achieved.

4.6.1.4. COMMUNICATION COMPONENT

This component is used to create connections and to manage these created

connections during execution life cycle of our software. Therefore, some

components which require to send/receive information can use related parts of this

communication component. Note that socket communication between Java and

C++ parts is still analyzed about where to locate these methods. Probably, it will

be decided during implementation phase.

ALGORITHMIC TRADING MoneyFellas

- 10 -
Software Design Description
Version 1.o

4.6.1.5. FIX8 FRAMEWORK

Fix8 is a FIX framework implemented in C++, provides client/server session

and connection classes having SSL support for the standard FIX field sorts which

are FIX asynchronous message persister, printer, asynchronous logger, and XML

configuration classes. Fix8 can easily be enlarged and customized, so these open

source libraries shall be used from developer team of the software while

implementation of the FIX communication part of our product.[11]

4.6.1.6. MONGODB DATABASE

One of the popular data storing system whose type NoSQL is MongoDB. This

database is used while storing all stock exchange data within a specific time period.

Then, these stored datum will be used to make estimation about future prices of

shares using algorithms. There are two main properties which should be attached

importance to. Firstly, there is no data manipulation processes over saved datum

during execution of algorithms. Secondly, speed of datum analysis is vital in our

project. Since MongoDB is the most appropriate database management system

which meets above properties, it is chosen as data storing system for

this part of software. [9]

4.6.1.7. MYSQL DATABASE

MySQL is an open source relational database management system(RDBMS)

based on structured query language(SQL). This data storage system will be used

to store relational user datum such as personnel information or active trades’

information of a user.

4.6.1.8. JAVAFX SOFTWARE PLATFORM

JavaFX can be considered as a software platform that enable to create and

deliver vast GUI applications that can run across a wide variety of devices thanks

to Java Runtime Environment base. Developer team of our product shall use

JavaFX for all GUI parts of the software. [14]

4.6.1.9. C++ PROGRAMMING LANGUAGE

C++ is one of the most famous general-purpose programming languages in

software world. It enables to manipulate the low-level memory management

facilities and it has generic programming, imperative and object-oriented features.

ALGORITHMIC TRADING MoneyFellas

- 11 -
Software Design Description
Version 1.o

Because of these features, developer team of the software shall use C++ for back-

end implementation.

4.6.1.10. APACHE SUBVERSION

Apache Subversion is distributed under the Apache License freely. This

software provides to create software with versions and to construct revision control

system to check source code. In order to maintain current and historical versions

of files and directories, Subversion can be used by software developers. Also,

developer can recover older versions their committed data thanks to Subversion.

Therefore, developers of the software should use Apache Subversion to maintain

software development in a well-structured way. [16]

4.6.2. DESIGN ATTRIBUTES

Information about design attributes can be achieved from above section

4.6.1. Design Entities. If the explanations about design attributes were given in

this section, this would be repetition. Therefore there will be no description in this

part, any necessary information about the attributes can be attained from above

section 4.6.1. Design Entities.

4.6.3. DESIGN RELATIONSHIPS

 As described above part 4.6.1. Design Entities, main systems that are

related to our software are Server System, Client System, Algorithms Server

System, Communication Component, Fix8 Framework, MongoDB Database,

MySQL Database, JavaFX Software Platform, C++ Programming Language and

Apache Subversion.

 Server System has relationships with Client System, Communication System

and the systems including any database.

 Client system is interface of our software, it has relationships with Server

System in backside.

 Algorithms Server System can be considered as a subsystem of Server

System. It has relationships with Server System and MongoDB Database.

 Communication Component helps to access to BIST. It has relationships with

Fix8 Framework, Server System.

 Other less important relationships between entities or components of our

project will be presented in Logical Viewpoint part.

ALGORITHMIC TRADING MoneyFellas

- 12 -
Software Design Description
Version 1.o

4.6.4. DESIGN CONSTRAINTS

 All design entities described in this design document should be implemented

during implementation phase. Relationships mentioned in above section between

entities should be preserved during implementation phase as well. Besides, object

oriented paradigm should be followed totally in any phase of the development

process. It should be attached great importance to all object oriented notions

especially reusability, encapsulation and modular structure.

 The classes should be defined well in design phase and they should be coded

neatly in implementation phase; moreover, developers should be careful about

neat comments during implementation.

4.7. DESIGN OVERLAYS

 There is no design overlay that is used for presenting additional information

with respect to an already defined design view.

4.8. DESIGN RATIONALE

 Some significant features like sustainability, maintainability, performance,

reliability and security affect the design choices of the project. These decisions can

be updated when necessary based upon requirements of stakeholders or users.

When implementation phase of the project, it will be attached great importance to

comments in methods and fields. Therefore, different developers can understand

and modify the any code part when necessary with the aid of these comments.

 Because of the decisions mentioned above paragraph, we choose object-

oriented approach to design the project. All systems and sub-systems will be

organized and explained in this design document. Components should become

independent from others that means any operations should not affect others

directly.

4.9. DESIGN LANGUAGES

Unified Modeling Language (UML) is used to create this document and design

of the software. StarUML is selected as the modelling tool.

ALGORITHMIC TRADING MoneyFellas

- 13 -
Software Design Description
Version 1.o

5. DESIGN VIEWPOINT

5.1. INTRODUCTION

 In this part, seven main design viewpoints of the Algorithmic Trading project

will be explained briefly. The viewpoints are explained, with order, as follows:

 Context viewpoint

 Composition viewpoint

 Logical viewpoint

 Interface viewpoint

 Interaction viewpoint

 State dynamics viewpoint

 Resource viewpoint

 Besides, each viewpoint will be supported by specific UML diagrams to

provide understandable content about working processes of the system.

5.2. CONTEXT VIEWPOINT

 AlgorithmicTrader software system's context viewpoint provides information

about user functionalities of our application. There are four major screens

controlled by the user which are Login Screen, Main Screen, New Trade Screen

and Logs Screen. Each of them consists of subsections.

5.2.1. DESIGN CONCERNS

 There are four main service categories related to our software product. Each

of these shows parallelism with a screen of the application. Therefore, these main

service categories will be analyzed in terms of Login Screen, Main Screen, New

Trade Screen and Log Screen categories.

 Login Screen can be considered as initial screen of the application. In order

to use core services of our product, username and password fields should be filled

correctly in this screen. These username and password fields are tried to be

matched with ones in database. If the authentication is successful, then this screen

is shut down and Main Screen is opened.

 Main Screen have almost all core services of our application. All main and

important task can be reached by using this screen. Creation of new trades,

checking status of any active trades and controlling assets of user’s assets can be

said as few examples of these main services.

ALGORITHMIC TRADING MoneyFellas

- 14 -
Software Design Description
Version 1.o

 New Trade Screen can be reached by clicking New Trade button in main

screen. When clicked this button, New Trade dialog box is opened. User can fulfil

the fields in this dialog box and he/she can start a new trade according to his/her

choices.

 Log Screen can be reached by clicking Log button in Main Screen. All

successful or unsuccessful transactions and operations related to selected trade

can be displayed in this window. Normally, all details is not shown on screen but

some expert users and developers may want to check each action carried by the

software. Therefore, we will present this service. Note that logs will be received

from database.

5.2.2. DESIGN ELEMENTS

5.2.2.1. LOGIN SCREEN USE CASE DIAGRAM

Figure 1: LOGIN SCREEN USE CASE DIAGRAM

 Login Screen has four user interaction sections. They can be seen above use

case diagram.

ALGORITHMIC TRADING MoneyFellas

- 15 -
Software Design Description
Version 1.o

5.2.2.1.1. ENTER USERNAME USE CASE DIAGRAM

Figure 2: ENTER USERNAME USE CASE DIAGRAM

 After application is started, user can write his/her username in the

'Username' field in Login Screen.

5.2.2.1.2. ENTER PASSWORD USE CASE DIAGRAM

Figure 3: ENTER PASSWORD USE CASE DIAGRAM

 After application is started, user can write his/her password in the 'Password'

field in Login Screen.

5.2.2.1.3. FORGOT YOUR PASSWORD USE CASE DIAGRAM

Figure 4: FORGOT YOUR PASSWORD USE CASE DIAGRAM

 After application started, if user does not remember his/her password, user

can reset own password by using this field.

ALGORITHMIC TRADING MoneyFellas

- 16 -
Software Design Description
Version 1.o

5.2.2.1.4. LOGIN USE CASE DIAGRAM

Figure 5: LOGIN USE CASE DIAGRAM

 After application is started, user can login to the system successfully after

filling Username and Password fields correctly by clicking 'Login' button in Login

Screen.

5.2.2.2. MAIN SCREEN USE CASE DIAGRAM

Figure 6: MAIN SCREEN USE CASE DIAGRAM

ALGORITHMIC TRADING MoneyFellas

- 17 -
Software Design Description
Version 1.o

5.2.2.2.1. SELECT ACTIVE TRADE USE CASE DIAGRAM

Figure 7: SELECT ACTIVE TRADE USE CASE DIAGRAM

 User can select an open position from the open position table in order to

make some operations such as showing details of an open position element or

simulating it in Main Screen.

5.2.2.2.2. STOP/RESUME TRADE USE CASE DIAGRAM

Figure 8: STOP/RESUME TRADE USE CASE DIAGRAM

 User can stop or resume any active trade in the open position table in Main

Screen.

5.2.2.2.3 SIMULATE USE CASE DIAGRAM

Figure 9: SIMULATE USE CASE DIAGRAM

 Current active trades information will be displayed on the screen as graphics

in Main Screen, more information can be achieved from Interface Viewpoint

section.

ALGORITHMIC TRADING MoneyFellas

- 18 -
Software Design Description
Version 1.o

5.2.2.2.4. SHOW TRADE LOG USE CASE DIAGRAM

Figure 10: SHOW TRADE LOG USE CASE DIAGRAM

 In Main Screen, user can check his/her all trade information in detail such

that whether sell trade order is accepted from stock exchange server or not.

Therefore, user will be aware of when any failure exists in the system.

5.2.2.2.5. SHOW TRADE DETAILS USE CASE DIAGRAM

Figure 11: SHOW TRADE DETAILS USE CASE DIAGRAM

 When user clicks twice on an open position, details of it such as expiration

date, size and type or creation date will be shown to the user in Main Screen.

5.2.2.2.6. SHOW PORTFOLIO USE CASE DIAGRAM

Figure 12: SHOW PORTFOLIO USE CASE DIAGRAM

 Thanks to this part, user will be informed about his/her general profit/loss

amount information in Main Screen. This information will be shown on the screen.

ALGORITHMIC TRADING MoneyFellas

- 19 -
Software Design Description
Version 1.o

5.2.2.2.7. SHOW STOCK EXCHANGE MARKET DATE USE CASE DIAGRAM

Figure 13: SHOW STOCK EXCHANGE MARKET DATE USE CASE DIAGRAM

 This part will be used to show exact detail date for related stock exchange

market in Main Screen. This stock exchange is BIST for our project.

5.2.2.2.8. SELL/BUY TRADE USE CASE DIAGRAM

Figure 14: SELL/BUY TRADE USE CASE DIAGRAM

 User can operate his/her assets directly with choosing sell/buy trade order

and its amount in Main Screen.

5.2.2.2.9. OPTION MENU USE CASE DIAGRAM

Figure 15: OPTION MENU USE CASE DIAGRAM

 This menu includes lots of setting options about the software such as

updating general user information in Main Screen. More information can be

achieved from Interface Viewpoint section of this document.

ALGORITHMIC TRADING MoneyFellas

- 20 -
Software Design Description
Version 1.o

5.2.2.2.10. CREATE NEW TRADE USE CASE DIAGRAM

Figure 16: CREATE NEW TRADE USE CASE DIAGRAM

 User can trigger new trade screen via pressing create new trade button to

create new trade in Main Screen. New Trade Screen is opened in front of Main

Screen.

5.2.2.3. NEW TRADE SCREEN USE CASE DIAGRAM

Figure 17: NEW TRADE SCREEN USE CASE DIAGRAM

 This screen is opened as dialog box in front of Main Screen. It lets user fulfil

required fields to be able to start a new trade. Note that New Trade Screen and

new trade dialog box is used interchangeably instead of each other in this SDD

document.

ALGORITHMIC TRADING MoneyFellas

- 21 -
Software Design Description
Version 1.o

5.2.2.3.1. SELECT TRADE KIND USE CASE DIAGRAM

Figure 18: SELECT TRADE KIND USE CASE DIAGRAM

 User can determine the type of trade to be created in new trade dialog box.

5.2.2.3.2. ENTER EXPIRATION DATE USE CASE DIAGRAM

Figure 19: ENTER EXPIRATION DATE USE CASE DIAGRAM

 User can determine the expiration date of trade to be created by filling

'Expiration Date' field in new trade dialog box.

5.2.2.3.3. ENTER SIZE USE CASE DIAGRAM

Figure 20: ENTER SIZE USE CASE DIAGRAM

 User can determine the size of trade to be created by filling 'Size' field in

new trade dialog box.

ALGORITHMIC TRADING MoneyFellas

- 22 -
Software Design Description
Version 1.o

5.2.2.3.4. SELECT STRATEGY USE CASE DIAGRAM

Figure 21: SELECT STRATEGY USE CASE DIAGRAM

 User can determine the strategy of trade to be created in new trade dialog

box. In backside of the application, this strategy choice is evaluated and it is

decided to use which algorithm/algorithms to be used.

5.2.2.3.5. START TRADE USE CASE DIAGRAM

Figure 22: START TRADE USE CASE DIAGRAM

 In New Trade Screen, user can start trade by clicking start button after

fulfilling all required fields.

5.2.2.3.6. CANCEL TRADE USE CASE DIAGRAM

Figure 23: CANCEL TRADE USE CASE DIAGRAM

 In New Trade Screen, user can decide to give up starting trade by clicking

cancel button in any time. When clicked this cancel button, new trade dialog box

is shut down.

ALGORITHMIC TRADING MoneyFellas

- 23 -
Software Design Description
Version 1.o

5.2.2.4. LOG SCREEN USE CASE DIAGRAM

Figure 24: LOG SCREEN USE CASE DIAGRAM

 In this screen, user can display all logs of selected trade, these logs are

received form database.

ALGORITHMIC TRADING MoneyFellas

- 24 -
Software Design Description
Version 1.o

5.2.3. EXAMPLE UML LANGUAGE

 Complete UML use case diagram of our system can be shown as follows.

Note that services that belong to a screen can only be reached while the screen is

displayed to the user.

Figure 25: COMPLETE USE CASE DIAGRAM OF AlgorithmicTrader

5.2.4. DESIGN CONSTRAINTS

 Quality is important with respect to three aspects for our software. One of

them is fast issue. Since a share can be purchased by other one/ones, if there is

a buy order for any share, that order is completed as much as possible. Besides,

since our algorithms use huge amount of datum to make a decision that is sell/buy

order, they should be implemented in most efficient way. Other two issues are

security and safety. Safety is important because of in case of any failure, huge

amount loss can be discussed. Also, security is important because datum that have

high privacy level are processed continuously. Therefore, great importance should

ALGORITHMIC TRADING MoneyFellas

- 25 -
Software Design Description
Version 1.o

be attached to this security issue and any information should not be achieved by

any third part of software or people.

5.2.5. DESIGN RELATIONSHIPS

 In Login Screen, username and password are expected from user and they

are checked with ones in database. If there is match, Login Screen is closed and

Main Screen is opened.

 In Main Screen, there are many relationships between modules and classes

in our software. Recording logs to database, getting necessary information to draw

graphics from database, getting required datum to be processed by algorithms,

communication with BIST via FIX protocol, communication with C++ and JavaFX

parts of our software can be said as most important relationships in the application

during execution.

 In New Trade Screen, necessary fields are filled by user and this information

is sent to C++ server part of the software via socket communication.

 In Log Screen, detailed information are received from database and it is

shown in JavaFX interface to the user.

ALGORITHMIC TRADING MoneyFellas

- 26 -
Software Design Description
Version 1.o

5.3. COMPOSITION VIEWPOINT

5.3.1. DESIGN CONCERNS

This viewpoint helps to clarify some of the concerns such that cost,

staffing and schedule for the development effort. Therefore, main and sub

packages will be described in this part.

There will be tree main packages which are Server System, Client

system and Algorithms Server System. Through the design of our software,

Server System shall be implemented first because other main packages like

Algorithms Server and Client System are strictly depended on the Server

System package. After some of the critical part of Server System are

implemented, other main packages which are mentioned in previous

sentence will be ready to implement. In addition to main packages, there

are sub packages and components to complete our system design

sufficiently and they are described in below component diagram.

5.3.2. DESIGN ELEMENTS

Design Entities:

Main design entities of our software are Server System, Client System and

Algorithms Server System. Server System includes subcomponents which are

Communication Component, Trades Component and Database Component. Also,

each component consists of other sub components. One of the subcomponent is

Communication Component. This component has two subcomponent named as

C++ component and Java component. In addition, these two subcomponent has

c++ server-client part and Java server-client part respectively. Moreover,

Communication Component uses some library and framework like fix data library

and FIX8 framework. The other subcomponent is Trades Component and it has

three subcomponent which are name as TradeOrder, Trade and MarketData. The

last component is Database Component and it consists of just one subcomponent

named as DBController. However this subcomponent has three subparts which are

FIXDataRepositoryControllerDB, AccountControllerDB and TradeLogControllerDB.

Client System includes three essential subcomponent which are DisplayRunner,

Display and OpenPosition. Also, Display component has subparts which are named

ALGORITHMIC TRADING MoneyFellas

- 27 -
Software Design Description
Version 1.o

as LoginController and MainController. These subparts uses a platform which is

called as JavaFxSoftware Platform to design graphical user interface of our

product.

Algorithms Server System has just one main subcomponent named as

AlgoController and also this component has two subpart which are named as

BinaryOption and BondOption.

Design Relationships:

In design of our software, almost all component has relation between each

other so in this part these relations will be explained in detail.

Communication Component which is explained in previous part has relation with

almost all components because it is constructed as a bridge between each

component. Hence, in design of software class diagram, association relation is used

between Communication Component and others. Moreover, subparts of this

component which are named as SocketCommunication and FIX have association

relation with other connected components implicitly. Trades Component have three

subparts as mentioned previous section. We can call these subparts as subclass of

related component. One of the class of this component is “Trade” and this class is

connected to “TradeOrder” class with aggregation relation. This relation type is

choosen because “Trade” class has an element from “TradeOrder” class. On the

other hand, one of the subclass of this component is “MarketData”. This class is

connected to “Trade” class using association relation since “Trade” class uses an

element from this class. In addition to this, “TradeOrder” class has a aggregation

relation with FIX class of Communication Component because fix connection is

required to send created trade order. Other than these inner relations, “Trade”

class is connected with Database, AlgorithmsServerSystem and DisplayRunner

with association as outer relation. In Database Component, DBController is

designed as parent class. Also, this parent class has two subclass which are

FIXDataRepositoryControllerDB and AccountControllerDB. Therefore, these parts

connected to each other with generalization to apply well-designed object oriented

implementation. In addition to this, association relationship is used between this

component and other related components to make it accessible.

DisplayRunner class which is belong to Client System has composition relation with

Display class. Also, Display class is designed as a parent class of other two

subclasses which are LoginController and MainController. Therefore, these two

ALGORITHMIC TRADING MoneyFellas

- 28 -
Software Design Description
Version 1.o

class are connected to Display class with generalization relation. In addition to this,

one of the class of this component named as “OpenPositions” class has aggregation

relationship with MainController class. This relation type is choosen because

displaying content of main screen is strictly depend on this class. Furthermore,

MainController class has association with Communication Component because it

uses an object from that class. AlgoController is a class of the Algorithm Server

System and this part is a parent class of other subclass which are BinaryOption

and BondOption. Therefore, there is generalization relationship between this class

and other two class. Also, this part has two association between Trade and

FIXDataRepositoryDB classes because these two related class use some part of

AlgoController class during life cycle of the software.

Design Attributes:

Detailed description about attributes of our software is given in part 4.6.1.

Therefore, same information will not be explained again in this part to avoid

repetition.

ALGORITHMIC TRADING MoneyFellas

- 29 -
Software Design Description
Version 1.o

5.3.3. EXAMPLE UML LANGUAGE

UML composition diagram can be shown as follows:

 Figure 26: COMPOSITION DIAGRAM OF AlgorithmicTrader

ALGORITHMIC TRADING MoneyFellas

- 30 -
Software Design Description
Version 1.o

5.4. LOGICAL VIEWPOINT

The purpose of the Logical viewpoint is to elaborate existing and designed

types and their implementations as classes and interfaces with their structural

static relationships.

5.4.1. DESIGN CONCERNS

The purpose of the Logical viewpoint is to describe the static structure in

which compile time entities, associations and inheritance among them in full detail.

The design view related to the logical viewpoint depends on class diagram. The

classes and interfaces with their structural static relationships are represented in

below.

5.4.2. DESIGN ELEMENTS

5.4.2.1. Users NAMESPACE

Purpose of this namespace is to keep all user implementations together.

5.4.2.1.1. Account

The responsibility of this class is to hold and manipulate all information

related to users.

Name Type Visibility Definition

name String private The name of the user.

surname String private The surname of the user.

username String private The username of the user.

password String private The password of the user.

email String private The email address of the user.

userID Integer private The ID of the user kept in relational database.

ALGORITHMIC TRADING MoneyFellas

- 31 -
Software Design Description
Version 1.o

5.4.2.2. Trades NAMESPACE

Purpose of this namespace is to keep all implementations related to trade

and stock market data together.

5.4.2.2.1. Trade

Trade class stores information of all attributes of trades. This object is

constructed when user creates a new trade and starts to run immediately. Users

will reach this information on the main screen and interact with trade when he/she

wants.

 Name Type Visibility Definition

ID Integer private The ID of the trade.

tradeKind String private This field represents which stock market

trading area will be interested in.

expirationDate Date private This field represents how long trade will

be active.

size Double private The amount of money that will be

invested for the trade.

maxProfitBound Integer private This field defines the maximum profit

amount.

maxLossBound Integer private This field defines the maximum loss

amount.

strategy String private The strategy will be used during trading.

filledTradeInfo() void public This method analyzes the FIX data and

fill related fields Trade object.

runTransaction() void private This is a thread method that includes all

operations related to trading such as

analyzing stock market data, making

decision and submitting orders to stock

market.

ALGORITHMIC TRADING MoneyFellas

- 32 -
Software Design Description
Version 1.o

5.4.2.2.2. TradeOrder

This class is responsible for creating FIX message to be sent to the stock

exchange according to the decision made after execution of algorithm. Also, it has

a method which receives FIX message to be sent, verifies the message. If message

verification is successful, it is sent to stock market through methods of FIX class

instance.

Name Type Visibility Definition

orderMessage String private The FIX message that created according

to trade information.

createMessage() String public Create FIX message.

evaluateMessage() void public Get a FIX message as a parameter and

extract meaning from data.

5.4.2.2.3. MarketData

This class consists of stock market information which is updated frequently.

To update itself, a FIX class instance from Communication namespace is created.

It gets market data through this FIX class instance by sending appropriate FIX

request. Also, all status of responses taken from stock exchange is dumped to

database as logs.

Name Type Visibility Definition

currentValue Double private Current price of the security.

date Date private Current date of the security.

tradeKind Integer private This field represents which stock market

trading area will be interested in.

ALGORITHMIC TRADING MoneyFellas

- 33 -
Software Design Description
Version 1.o

5.4.2.3. GUI PACKAGE

Purpose of this package is to keep all user interface implementations

together.

5.4.2.3.1. DisplayRunner

This class can be considered as brain class of the software. It calls methods

to draw LoginScreen, MainScreen and to update graphics taking place in

MainScreen. Also it has methods to provide user to sign in. Note that main method

exists in this class; therefore, the software will be started by this class.

Name Type Visibility Definition

user Account private The class which holds user

information.

dbControllerObj DBController private

static

This field operates all

transaction between

DisplayRunner and

database.

newTrade() void private This method is used to open

new trade dialog when user

clicks new trade button.

loadMainScreen() void public After successful login, this

method is called to diplay

main screen.

loadLoginScreen() void public After application starts, this

method is called to diplay

login screen.

replaceSceneContent() void public This method loads related

fxml file to scene content.

ALGORITHMIC TRADING MoneyFellas

- 34 -
Software Design Description
Version 1.o

5.4.2.3.2. MainController

This class manages all processes which are performed in main screen such

as drawing charts, graphs or bringing required information from back-end with

creating communication etc.

Name Type Visibility Definition

openPositionTable TableView private The OpenPosition list that

user have in stock market.

lineChart LineChart private This field simulates the flow

of the active trades in

deliberate amount of time.

dateLabel Label private This field is a non-editable

text control. It is used to

display date of the stock

market.

timeLabel Label private This field is a non-editable

text control. It is used to

display time of the stock

market.

dateTimer Timeline private This method will periodically

get stock market date and

display it.

chartTimer Timeline private This method will periodically

add asset value to lineChart.

tableTimer Timeline private This method will periodically

update open position table

by updating their price and

profit margin.

initialize() void public This method runs in the

beginning of the main screen

ALGORITHMIC TRADING MoneyFellas

- 35 -
Software Design Description
Version 1.o

and initialize components

such as chart, table, date

and time.

initializeDate() void public Set a timer for 1 second to

update date.

initializeTable() void public Set a timer for 3 second to

update table and add already

created trades to table.

initializeChart() void public Set a timer for 5 minute to

update chart.

addDataChart() void public Add new asset information to

lineChart during simulation.

initializeCommunication() void public Create communication

between server and client.

showNewTradeDialog() void public When user wants to add new

trade, a dialog will appear in

the main screen by calling

this method.

5.4.2.3.3. LoginController

This class manages all preprocesses such as login and forget my password.

These processes is performed in this part thanks to creating connection with back-

end implicitly.

Name Type Visibility Definition

username String private A field which represents the user name.

password String private A field which represents the user

password.

ALGORITHMIC TRADING MoneyFellas

- 36 -
Software Design Description
Version 1.o

initialize() void public A method that initializes default values of

required fields.

forgotPassword() void private Enable user to reset password.

processLogin() void private This method makes required

authentication process.

5.4.2.3.4. OpenPosition

This class will be used while holding information about trades which are

owned from current user to display in the main screen.

Name Type Visibility Definition

ID Integer private The ID of the open position.

size Double private The surname of the user.

tradeKind Integer private This field represents which stock market

trading area will be interested in.

expirationDate Date private This field represents how long trade will be

active.

currentValue Double private Current price of the security.

profitRation Double private This field refers to a measure of

profitability. It is calculated by finding the

net profit as a percentage of the revenue.

ALGORITHMIC TRADING MoneyFellas

- 37 -
Software Design Description
Version 1.o

5.4.2.4. Database NAMESPACE

Purpose of this namespace is to keep all database implementations together.

5.4.2.4.1. DBController

The task of this class is to connect and transfer data between database and

server. This connection is established once when the main screen is opened and it

is closed when the application is closed.

Name Type Visibility Definition

connection Connection private An object that links application to

database.

openConnection() void public Establishes a database connection.

closeConnection() void public Finilize database connection.

5.4.2.4.2. FIXDATARepositoryControllerDB

The responsibility of this class is to record stock market date to database

and provide the system to reach all market data during execution trading

algorithms.

Name Type Visibility Definition

addInfo() bool public Add stock market data to no-sql database.

getRelatedData() void public Select desired stock market data from

database.

ALGORITHMIC TRADING MoneyFellas

- 38 -
Software Design Description
Version 1.o

5.4.2.4.3. AccountControllerDB

This class is responsible to record trades which are created by users and

hold all information of the user. It verifies the user’s password and username is

recorded in database. This class provides the system to reach easily all trades

information of related user.

Name Type Visibility Definition

addTrade() void public Add new trade information to current user

profile in database.

verifyUser() void public Checks user password and username from

database.

5.4.2.4.4. TradeLogControllerDB

The responsibility of this class to save all transactions’ status information to

database as logs. Note that each log record shall be saved to database even in

case of failure.

Name Type Visibility Definition

saveLog() void public Insert any kind of information like transaction

details,errors or warnings to database.

ALGORITHMIC TRADING MoneyFellas

- 39 -
Software Design Description
Version 1.o

5.4.2.5. Strategy NAMESPACE

Purpose of this namespace is to keep all algorithms implementations

together.

5.4.2.5.1. AlgoController

This is an abstract class. There are various algorithms which inherit from

this abstract class. According to chosen trade’s strategy, it is determined which

algorithm should be run in chooseBestAlgorithm method of this class.

Name Type Visibility Definition

chooseBestAlgorithm() Integer public According to chosen trade criteria,

proper algorithms will be selected

to make estimation.

5.4.2.6. Communication NAMESPACE

Purpose of this namespace is to keep all communication implementations

together.

5.4.2.6.1. SocketCommunication

This class will create a socket connection between client side and server.

Then with sending necessary messages, it will receive stock market data and show

that to user at simulation. It will also send new trade information when user creates

a trade.

Name Type Visibility Definition

run() void public Establish a connection between server and

related port.

sendTradeInfo() void public Send trade information to connected port.

addData() void public Send received data to main controller.

ALGORITHMIC TRADING MoneyFellas

- 40 -
Software Design Description
Version 1.o

5.4.2.6.2. FIX

This class contains the message to be sent or get from the stock exchange.

It has two methods to accomplish to send/receive messages to/from BIST.

Name Type Visibility Definition

fixMessage String private Holds a FIX message which is used to

sell/ buy order with stock market server.

sendMessage() void public Submit created FIX message to stock

exchange system.

receiveMessage() String public Receive FIX message from stock

exchange system.

5.4.2.7. CppComponent NAMESPACE

Purpose of this namespace is to keep all socket communications

implementations in C++ together.

5.4.2.7.1. CppServer

Name Type Visibility Definition

m_pBuffer Double private This field is used as a buffer

m_pBuffer2 Double private This field is used as a buffer

m_addrRemote struct

sockaddr_in

private This field holds connector's address

information.

m_addrMe struct

sockaddr_in

private This field holds this server address

information.

connect() bool public Accept a new connection between

this object and the port listening

on.

close() bool public Shut down the socket.

sendBytes() bool public Send bytes to the listened port.

ALGORITHMIC TRADING MoneyFellas

- 41 -
Software Design Description
Version 1.o

recvBytes() bool public Receive bytes from the listened

port.

sendAck() bool public Send short acknowledge to the

server to know they are ready for

more

receiveAck() bool public Receive short acknowledge from

the server to know they are ready

for more

5.4.2.7.2. CppClient

Name Type Visibility Definition

m_pBuffer Double private This field is used as a buffer

m_pBuffer2 Double private This field is used as a buffer

m_addrRemote struct

sockaddr_in

private This field holds connector's address

information.

connect() bool public Accept a new connection between

this object and the port listening

on.

close() bool public Shut down the socket.

sendBytes() bool public Send bytes to the listened port.

recvBytes() Integer public Receive bytes from the listened

port.

sendAck() bool public Send short acknowledge to the

server to know they are ready for

more

ALGORITHMIC TRADING MoneyFellas

- 42 -
Software Design Description
Version 1.o

receiveAck() bool public Receive short acknowledge from

the server to know they are ready

for more

5.4.2.8. JavaComponent PACKAGE

Purpose of this package is to keep all socket communications

implementations in java together.

5.4.2.8.1. JavaClient

Name Type Visibility Definition

data byte private This field is used to store

received data from server

buffer byte private This field is used to

temporarily store data

input BufferedInputStream private This field is used to read data

from the listened port.

output BufferedOutputStream private This field is used to send data

to the listened port.

sendBytes() bool public Send bytes to the listened

port.

recvBytes() Integer public Receive bytes from the

listened port.

sendAck() bool public Send short acknowledge to

the server to know they are

ready for more

receiveAck() bool public Receive short acknowledge

from the server to know they

are ready for more

ALGORITHMIC TRADING MoneyFellas

- 43 -
Software Design Description
Version 1.o

5.4.2.8.2. JavaServer

Name Type Visibility Definition

data byte private This field is used to store data

that will be sent to client

buffer byte private This field is used to

temporarily store data

input BufferedInputStream private This field is used to read data

from the listened port.

output BufferedOutputStream private This field is used to send data

to the listened port.

connect() void public Accept a new connection

between this object and the

port listening on.

sendBytes() void public Send bytes to the listened

port.

recvBytes() void public Receive bytes from the

listened port.

sendAck() void public Send short acknowledge to

the server to know they are

ready for more

receiveAck() void public Receive short acknowledge

from the server to know they

are ready for more

ALGORITHMIC TRADING MoneyFellas

- 44 -
Software Design Description
Version 1.o

5.4.3. EXAMPLE UML LANGUAGE

Class diagram of the project can be shown as follows:

Figure 27: CLASS DIAGRAM OF AlgorithmicTrader

ALGORITHMIC TRADING MoneyFellas

- 45 -
Software Design Description
Version 1.o

5.5. INTERFACE VIEWPOINT

This interface viewpoint provides information designers, programmers, and

testers the means to know how to correctly use the services provided by

AlgorithmicTrader. This description includes the details of external and internal

interfaces not provided in the SRS of this project.

5.5.1 DESIGN CONCERNS

 One of the operation system of Windows, Linux or Mac-OS has to be installed

on computer.

 Client side of application is constructed with JavaFx platform so JVM (1.6 or

later) is mandatory.

 Data transfer between server and client side is performed using sockets.

 TCP protocol is used while using operating system sockets so TCP drivers must

be installed.

 C++ and Java parts have to send their data as bytes to transfer datum without

corrupted.

 The application server and stock exchange market server communicate over

Internet.

 Using cabled Internet connection which has high

bandwidth is recommended for users.

 Because of the FIX protocol usage, host computer has to be protected strictly

from attackers.

 Using multiple core computers with fastest processors is recommended for

users.

 At least 1 GB memory size must be free to run program properly.

5.5.2. DESIGN ELEMENTS

External Interfaces:

 FIX protocol via application and BIST

 Sockets via JavaFX and C++ parts

Internal Interfaces:

 JVM Run-time platform interface: for running app server which is

developed in java

ALGORITHMIC TRADING MoneyFellas

- 46 -
Software Design Description
Version 1.o

User Interfaces:

 Login Screen

Figure 28: Login Screen OF AlgorithmicTrader

 New Trade Screen (New Trade Dialog Box)

Figure 29: New Trade Screen OF AlgorithmicTrader

ALGORITHMIC TRADING MoneyFellas

- 47 -
Software Design Description
Version 1.o

 Main Screen

Figure 30: Main Screen OF AlgorithmicTrader

5.5.3. EXAMPLE UML LANGUAGE

Any required diagram was presented in previous section. Therefore, they

will not be stated in this part again in order to avoid repetition.

ALGORITHMIC TRADING MoneyFellas

- 48 -
Software Design Description
Version 1.o

5.6. INTERACTION VIEWPOINT

5.6.1. DESIGN CONCERNS

 AlgorithmicTrader is a real-time multi-threaded application. Its working

principle is based upon client-server architecture type. All shared methods and

variables should be thread-safe to protect from data corruption due to multi-

threaded property. This is true for not only communication between application

and BIST but also between main C++ parts and JavaFX interface. Communication

between application and BIST will be provided via FIX protocol. This part of the

application will be implemented by C++. Also, communication between C++ and

JavaFX will be carried out via sockets. Both JavaFX interface and C++ parts can

sent/receive data to/from each other.

 Model view controller architecture pattern is used in JavaFX interface of the

application. Model section is constituted by all information about any kind of trade.

View part is shown to the user via JavaFX screens. And last part that is controller

section can be analyzed from Logical Viewpoint part. MainController and

LoginController classes are implemented for this purpose. We are trying to

implement this architecture in most correct way. Furthermore, we aim to decouple

classes as much as possible.

ALGORITHMIC TRADING MoneyFellas

- 49 -
Software Design Description
Version 1.o

5.6.2. DESIGN ELEMENTS

 Note that detailed information about interfaces can be achieved from

Interface Viewpoint part of this SDD document in any case of confusion in this

part.

5.6.2.1. LOGIN/LOGOUT SEQUENCE DIAGRAM

Figure 31: LOGIN/LOGOUT SEQUENCE DIAGRAM

 In this login/logout sequence diagram, all actions taken by application are

shown above. Firstly, user starts application and he/she sees Login Screen. He/she

is expected to fill username and password fields. After the user enters username

and password, when he/she clicks login button, these fields are taken and matched

with the ones in the database. If there is matching record in database, this means

login authentication is successful.

ALGORITHMIC TRADING MoneyFellas

- 50 -
Software Design Description
Version 1.o

 When user wants to log out from system, he/she can click logout button.

Therefore, connection that exists for AccountControllerDB is closed. Successful

logout operation is carried out. Note that login and logout parts will be referenced

in next some sequence diagrams. Therefore, a frame is used in above diagram.

5.6.2.2. SCREEN REPLACING SEQUENCE DIAGRAM

Figure 32: SCREEN REPLACING SEQUENCE DIAGRAM

 In above sequence diagram, it is shown when and how will the Login Screen

will be replaced by Main Screen. Previous sequence diagram explains login process

in detail. When successful login authentication is carried out, Login Screen will be

closed and Main Screen will be opened. This will be carried on by calling

replaceSceneContent function. This function will be called from DisplayRunner

class. Note that Login Process and Logout Process is referenced from previous

sequence diagram. If they were drawn again, this would be repetition.

ALGORITHMIC TRADING MoneyFellas

- 51 -
Software Design Description
Version 1.o

5.6.2.3. RECEIVING PORTFOLIO SEQUENCE DIAGRAM

Figure 33: RECEIVING PORTFOLIO SEQUENCE DIAGRAM

 In this sequence diagram, it shown how a user can display its portfolio.

When Main Screen is opened, there will be a button that is used for receiving

portfolio from database. When user clicks this button, all portfolio belonging to

user will be retrieved from database and it will be displayed on top left part of the

main screen. More information about interface can be achieved from Interface

Viewpoint part of this SDD document. Note that database connection is already

established when Main Screen is opened; therefore, fast response are returned to

the user.

ALGORITHMIC TRADING MoneyFellas

- 52 -
Software Design Description
Version 1.o

5.6.2.4. OPENING NEW TRADE DIALOG SEQUENCE DIAGRAM

Figure 34: OPENING NEW TRADE DIALOG SEQUENCE DIAGRAM

 In this sequence diagram, it is shown how and when New Trade Dialog Box

will be shown to the user. In Main Screen, there will be a button that help to display

New Trade Screen. When user clicks this button New Trade Dialog Box is shown in

front of Main Screen. User is expected to fill the necessary fields in this opened

window to be able to start new trade. After filling necessary fields, user clicks start

button, and all information received from user, is sent to C++ part from this

JavaFX part of the software via sockets. Thus, new trade is started, all other

operations are performed on backside of the application and just necessary

information is sent to JavaFX interface from C++ part to be able to inform user

about what is the current status. Note that New Trade Screen and New Trade

Dialog Box is used interchangeably instead of each other in this SDD document.

ALGORITHMIC TRADING MoneyFellas

- 53 -
Software Design Description
Version 1.o

5.6.2.5. C++ TRADE CREATION AND FIX COMMUNICATION SEQUENCE

DIAGRAM

 Figure 35: C++ TRADE CREATION AND FIX COMMUNICATION SEQUENCE

DIAGRAM

 In this sequence diagram, trade initialization is depicted in detail in Trade

Initialization part above. In this part firstly, a Trade class object is constructed

according to data that is received from JavaFX part via socket. Then a TradeOrder

ALGORITHMIC TRADING MoneyFellas

- 54 -
Software Design Description
Version 1.o

class object is constructed and this objects belongs to firstly constructed trade

class. After these operations, Trade class is started. Note that Trade class

runTransaction method is a function pointer that is used to create thread.

 In second part Trade Order Sending To BIST part above diagram, send

message method is called from FIX class to be able to send FIX message to BIST.

Inside of this method, eligible FIX message is constructed from information that is

get from algorithms result. This message is sent to BIST. By the way, this action

is recorded to database to be able to provide safety and security properties.

 In last part Trade Order Receiving From BIST, receiveMessage method is

used to catch coming data from BIST. After taking of BIST message, this message

needs to be evaluated in order to be used in processes. Note that this coming

message has FIX data format. After evaluation of this message, two actions are

taken by the application. Firstly, coming information is sent to

FIXDATARepositoryControllerDB; that means data is saved to database since

algorithms will use them during execution, also they will be shown in user

interface. By the way, this receiving data action is also recorded to

TradeLogControllerDB database with saveLog method.

 Above explained receiving and sending FIX messages processes are

repeated many times. Time interval is not determined, this interval can change

according to result time of an algorithm.

 Note that some parts of above diagram will be referenced in next sequence

diagram.

ALGORITHMIC TRADING MoneyFellas

- 55 -
Software Design Description
Version 1.o

5.6.2.6. ALGORITHM CHOICE SEQUENCE DIAGRAM

Figure 36: ALGORITHM CHOICE SEQUENCE DIAGRAM

 In this sequence diagram, it is explained how will be chosen which algorithm

to be executed according to user’s trade strategy. When a trade is created by a

user, a trade strategy is expected to be chosen. According to this strategy, a

decision is made in chooseBestAlgorithm method of AlgoController class. Upon

making this decision, all trade process is shaped by this algorithm. That is all

sell/buy orders are returned by this algorithm.

 Note that some parts in above sequence diagram is taken by previous

sequence diagram by giving reference. It is avoided unnecessary repetition.

ALGORITHMIC TRADING MoneyFellas

- 56 -
Software Design Description
Version 1.o

5.6.2.7. DISPLAY DETAILED INFORMATION ABOUT A TRADE SEQUENCE

DIAGRAM

Figure 37: DISPLAY DETAILED INFORMATION ABOUT A TRADE SEQUENCE

DIAGRAM

 In this sequence diagram, it is depicted how to get detailed information

about an active trade. In Main Screen, there is a list of active trades. When clicked

one of those, detailed information about that trade is shown on the screen. This is

done by a method named getInfo in MainController class. This method retrieves

this detailed information from database. Note that the connection already exists

for FIXDATARepositoryControllerDB database in Main Screen.

5.6.3. EXAMPLE UML LANGUAGES

 UML sequence diagrams that help to explain this viewpoint are shown above

part 5.6.2. DESIGN ELEMENTS. Therefore, they will not be mentioned again here

in order to avoid repetition.

ALGORITHMIC TRADING MoneyFellas

- 57 -
Software Design Description
Version 1.o

5.7. STATE DYNAMICS VIEWPOINT

 AlgorithmicTrader is a real-time multi-thread software. Since its real-time

property, dynamic properties of the product are tried to be explained in detail as

much as possible.

5.7.1. DESIGN CONCERNS

 One of the most important issues for AlgorithmicTrader is performance.

Therefore, number of states and transitions should be minimized also reaction time

to events should be minimum as well. Safety and security principles are significant

important for AlgoritmicTrader. More states and transition number means

providing safety and security properties that much hard. These properties also

encourage minimum state and transition number. Besides, logs that will be

recorded to database should not be missed in any mode, state or transition. These

are main concerns that should be attached to great importance during design and

implementation phases of the project.

5.7.2. DESIGN ELEMENTS

Major events and states can be described as following table.

STATE EXPLANATION

Login The user will login to the system by entering username

and password.

MainScreen The system will show MainScreen which includes clock,

date, user portfolio, open trades and profit/loss charts

to user.

NewTrade The user will create new trade. This screen is opened in

front of Main Screen. Trades works as a parallel way.

Logout The user will exit from the application.

Make trading

decisions

The system will make trading decisions such as sell/buy

securities after analyzing the stock market data

according to trading strategy(algorithm).

Get market data The system will get stock market data in order to

analyze the securities for making trading decisions.

Besides, this data will be sent to user interface as well.

ALGORITHMIC TRADING MoneyFellas

- 58 -
Software Design Description
Version 1.o

Select securities

to buy/sell

After the analysis of market data, the system will select

securities that will be sold or bought.

Create buy/sell

orders

The system will create trade order to buy or sell

selecting securities in a format that can be able to send

to BIST.

Send trade order

to stock market

The system sends a message to the stock market via

FIX protocol according to user's trading strategy in

result of algorithm return value.

Analyze

securities

against trading

strategy

The system analyzes the market data based upon

trading choices and makes a decision to be followed as

next move with the aid of an algorithm that is

determined based upon user’s trading strategy.

Add open trade The system will add created trade to open trade list in

MainScreen after confirmed order coming from BIST.

Specify trade

type

The user will select trade type according to own trade

choice in New Trade Screen.

Trade value The user will specify quantity of securities which will sell

or buy in New Trade Screen.

Expiration date The user will determine deadline of the trade in New

Trade Screen.

Strategy The user will choose a strategy owing to his/her decision

in New Trade Screen. This strategy is important since

trade algorithm will be determined based upon this

choice.

Calculate

profit/loss

The system will calculate total profits or losses of user

from all trades. Also, they will be shown on user

interface.

Show chart The system will show profit/loss chart of selected trade

in Open Trade List in MainScreen.

List open trades The system will show all trades of user in MainScreen.

Select open

trade

The user will select one of his/her own active trades to

be able different operations on it such as display details

etc.

TABLE 2: EXPLANATIONS ABOUT MAIN STATES OF AlgorithmicTrader

ALGORITHMIC TRADING MoneyFellas

- 59 -
Software Design Description
Version 1.o

5.7.3. EXAMPLE LANGUAGES

Overall behavior of the system can be depicted as following diagram:

FIGURE 38: STATE DIAGRAM OF THE SYSTEM

5.8. RESOURCE VIEWPOINT

 Resources that are used in this project are explained in section 4.6.1. Design

Entities. They can be analyzed from that part. They will not be mentioned again

because it is avoided from repetition in this SDD document.

ALGORITHMIC TRADING MoneyFellas

- 60 -
Software Design Description
Version 1.o

6. PLANNING

6.1. TEAM STRUCTURE

As stated in SRS documented of the project, there shall be four developers

in the team. All team members have main focus points but they will work on every

stage of development, if it is necessary.

There will be two different stages for system design, which are developing

prototype and delivering end product. For prototype phase of development, three

developers shall work on server side and one developer shall work on client side.

Initially the software prototype will be available only as desktop application if this

step is achieved successfully web version can be developed. For delivering end

product phase, two developers shall work on server side, one developer shall work

on client side and three developers shall work on developing required algorithms

for software.

6.2. ESTIMATION (BASIC SCHEDULE)

This is the weekly basic schedule of the project starting from the first SRS

Document. We are following the schedule regularly; therefore, there will not be

any changes than the one existing in SRS document of the project. Detailed week

by week project schedule can be shown as follows:

0 - 1 Week : Team management and project selection.

1 - 3 Week : Searching required information from related internet source pages

and source books to understand system execution and design.

3 - 5 Week : Finishing search and starting to design of the system for server

side.

5 - 6 Week : Finishing system design for client side and starting implementation

of server side.

6 - 7 Week : Preparation and writing of software requirements specification.

8 - 11 Week : Finishing both client and server side demos and starting to test the

system. Also starting to bug fixing in same time with testing.

11 - 12 Week : Preparation and writing of software design descriptions.

12 - 13 Week : Finishing all current bug fixes.

13 - 14 Week : Presentation of the application and taking feedback and starting

to add/remove.

ALGORITHMIC TRADING MoneyFellas

- 61 -
Software Design Description
Version 1.o

14 - 15 Week : Finishing demos. Also starting to improve C++ server and search

proper algorithms.

15 - 19 Week : Finishing algorithm searches and starting to implement them on

system.

19 - 22 Week : Finishing implementation and starting to bug fix of analyzed data

results from algorithms.

22 - 24 Week : Finishing bugs on algorithms working logic and starting to testing

server and client sides.

24 - 25 Week : Beginning to bug fixes of server and client side. Continue to test

process of them and fix new bugs.

26 - 27 Week : Fixing all bugs.

28. Week : Delivering the project

6.3. PROCESS MODEL

We are following agile software development methodology. In the

milestones we will get feedback about what we did week by week and we will try

to stand by our planning as long as possible.

FIGURE 39: AGILE SOFTWARE DEVELOPMENT METHOD REPRESENTATION

7. CONCLUSION

 As mentioned SRS document of the project, algorithmic trading system

architectures are complicated because of the strict quality requirements of the

system. Also, the wide range of regulatory and compliance requirements which

manage automated trading makes the design of this software harder. Because of

these complexities, careful attention should be paid to the design and

ALGORITHMIC TRADING MoneyFellas

- 62 -
Software Design Description
Version 1.o

implementation of the system architecture. This software design description

document is constructed by overemphasizing these mentioned issues.

Implementation details are presented using viewpoints modules and data design

by considering above mentioned critical subjects.

