

MUSINS-PRO

SOFTWARE
DESIGN

DESCRIPTION
CENG490

Yağmur ERTAŞ - 1819333
Duygu ABADAN - 1818863

Baler İLHAN - 1819853
Anıl ARPACI – 1818954

 1/4/2015

 MusicBox SDD 1.0
 Jan 04, 2015

1

Table of Contents
1. Overview ... 3

1.1 Scope ... 3

1.2 Purpose .. 3

1.3 Intended audience ... 3

1.4 References ... 3

2. Definitions, Acronyms and Abbreviations .. 4

3. Conceptual Model for Software Design Descriptions .. 6

3.1 Software Design in Context .. 6

3.2 Software Design Descriptions within the Life Cycle .. 6

3.2.1 Influences on SDD Preparation .. 6

3.2.2 Influences on Software Life Cycle Products .. 7

3.2.3 Design Verification and Design Role in Validation .. 7

4. Design Description Information Content .. 7

4.1 Introduction ... 7

4.2 SDD Identification .. 8

4.3 Design Stakeholders and Their Concerns ... 8

4.4 Design Views .. 8

4.5 Design Viewpoints .. 8

4.6 Design Elements ... 10

4.7 Design Overlays .. 10

4.8 Design Rationale ... 10

4.9 Design Languages ... 10

5. Design Viewpoints .. 10

5.1 Introduction ... 10

5.2 Context viewpoint ... 11

5.2.1 Design concerns ... 11

5.2.2 Design Elements .. 11

5.2.3 Example Languages ... 13

 MusicBox SDD 1.0
 Jan 04, 2015

2

5.3 Composition Viewpoint .. 13

5.3.1 Design Concerns .. 13

5.3.2 Design Elements .. 14

5.3.3 Example Languages ... 16

5.4 Logical Viewpoint .. 16

5.4.1 Design Concerns .. 16

5.4.2 Design Elements .. 17

5.4.3 Example Languages ... 28

5.5 Dependency Viewpoint ... 28

5.5.1 Design Concerns .. 28

5.5.2 Design elements ... 29

5.5.3 Example Languages ... 29

5.6 Information Viewpoint .. 29

5.7 Patterns Use Viewpoint ... 29

5.8 Interface Viewpoint .. 29

5.8.1 Design Concerns .. 29

5.8.2 Design Elements .. 29

5.8.3 Example Languages ... 31

5.9 Structure Viewpoint .. 31

5.9.1 Design Concerns .. 31

5.9.2 Design Elements .. 31

5.9.3 Example languages .. 32

5.10 Interaction viewpoint .. 32

5.10.1 Design Concerns .. 32

5.10.2 Design Elements .. 32

5.10.3 Examples Languages.. 35

5.11 State Dynamics Viewpoint.. 35

5.11.1 Design Concerns .. 35

5.11.2 Design elements ... 35

5.11.3 Example languages .. 36

 MusicBox SDD 1.0
 Jan 04, 2015

3

1. Overview

1.1 Scope

The developed product is a system that can play musical instrument with just musical

notes. System will have options that loading image file or capturing image. Any proper image

file can be loaded to system for playing. With this property, the playing musical notes in a

musical instrument will be done with a very simple way. Objective of the system is to make

playing musical instrument easier for anybody who can interested in music. Each design concern

of the stakeholders are topic of at least one design view and these design views are described

with corresponding design elements and modeled with related UML diagrams. The document is

prepared in IEEE 1016-2009 standards.

1.2 Purpose

The purpose of this document is to provide a description of the design of the software

product to allow for software design to proceed with a perceptive of the design that is to be

structured and how the process of it develops. The topics of, general description of design

elements and their interactions, how the system will be structured, data & functional structure are

to be further discussed in order to help producing test cases, and help in maintenance services,

and also satisfy requirements, design details indicated in the SRS document.

1.3 Intended audience

 Intended audience of software design description is all stakeholders which includes

people who are interested to music, development team and testers.

1.4 References

[1] IEEE. IEEE Std 1016-2009 IEEE Standard for Information Technology – System Design –

Software Design Descriptions. IEEE Computer Society, 2009

[2] StarUML 5.0 User Guide. (2005). Retrieved from http://staruml.sourceforge.net/docs/user-

guide (en)/toc.html

[3] Software Specification Requirements (SRS) Document of MusicBox prepared by MusIns-

Pro.

http://staruml.sourceforge.net/docs/user-guide
http://staruml.sourceforge.net/docs/user-guide

 MusicBox SDD 1.0
 Jan 04, 2015

4

2. Definitions, Acronyms and Abbreviations
All the definitions, acronyms and abbreviations which are used in this document are described in

the following table.

Audiveris Open source code for OCR

Block diagram

A diagram showing in schematic form the general arrangement of the

parts or components of a complex system or process.

Class Diagram

A type of static structure diagram in UML that describes the structure of a

system by showing the system's classes, their attributes, operations (or

methods), and the relationships among the classes

DPI Dots Per Inch

IDE Integrated Development Environment

IEEE Standard International Electric Electronic Engineering Standards 1016-2009

JRE Java Runtime Environment

MP Megapixel

MusicXML An XML based file format for representing musical notation.

OCR Optical Character Recognition

Octave An interval between one musical pitch and another with half or double its

frequency.

OMR Optical Mark Recognition

PC Personal Computer

Rest An interval of silence in a piece of music, marked by a symbol indicating

the length of the pause.

http://en.wikipedia.org/wiki/Interval_(music)
http://en.wikipedia.org/wiki/Pitch_(music)
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Silence
http://en.wikipedia.org/wiki/Music

 MusicBox SDD 1.0
 Jan 04, 2015

5

Score A written form of a musical composition.

Score Sheet A handwritten or printed for of music notation that uses musical symbols.

SDD Software Design Description

SDK Software Development Kit

Sprint A set of period of time during which specific work has to be completed

and made ready for review

SRS Software Requirement Specification

Stakeholders Any person with an interest in the system who is not a developer of the

system.

StarUML Design tool of diagrams

State Transition

Diagram

A type of static structure diagram in UML that describes the transition of

the system functions

USB Universal Serial Bus

Use Case

Diagram

A type of static structure diagram in UML that describes user's interaction

with the system

User Person who wants to use the system

User Interface An interface that our system contact with the user of the system. It gets all

needed information for its running, from user to our system.

XML Extensible Markup Language

.bmp Bitmap image file format

.mip Developer designed file format (MusIns-Pro)

 MusicBox SDD 1.0
 Jan 04, 2015

6

.tif, .tiff Tagged Image File Format

3. Conceptual Model for Software Design Descriptions

This section includes basic MusicBox System terms, concepts and context of SDD in

which the documentation is prepared. The purpose of conceptual model is to give a better

understanding of system terminology and software life cycle that the system resides on. The

conceptual model also gives information about stakeholders who will use SDD and how the SDD

will be used.

3.1 Software Design in Context

The MusicBox System will be designed as object-oriented in a modular design fashion.

The system will be implemented with Java using NetBeans as IDE. The system will try to give

the most accurate result in a most applicable, proper and correct time with its both software and

hardware parts; so it can respond to users’ wants correctly and quickly. It should respond

correctly in musical manner, also quickly in user interface and note recognition. The speed of

software part of the system depends on the computational operations according to processor(s) of

computer that runs our system.

 Our MusicBox System is planned to be an application on the system in personal

computers which does not need to have an access to Internet. With its hardware component, the

MusicBox System will be a standalone application. Also with portability and adaptability, the

system can be ported to different platforms, such as Linux operating system, Raspberry Pi, etc.

3.2 Software Design Descriptions within the Life Cycle

This software will be created following IEEE standards. The primary milestones of this

system are requirements analysis, design description analysis, implementation and finally

verification and validation.

3.2.1 Influences on SDD Preparation

The very first influence on software design process is the MusicBox System SRS

document. In SDD, we considered the product perspective, functional/nonfunctional

 MusicBox SDD 1.0
 Jan 04, 2015

7

requirements and interface requirements that were included in the SRS. Given specifications and

the possible new requests from the stakeholders will specify the design process of this system.

3.2.2 Influences on Software Life Cycle Products

Firstly, all interfaces should be designed. Before connecting the software and hardware

parts of the system, user interface should be shown with sample examples, which are given and

processed using interface, to the stakeholders. As a result of this process, stakeholders can share

their ideas and requirements about the MusicBox System. Finally software and hardware parts

will be connected.

 Furthermore, SDD will guide us all the way through the system. According to this

document or the first phase, some requirements can be added or removed from the software

requirements. Consequently, requirements of the stakeholders can be met more precisely after

each sprint of our development process.

3.2.3 Design Verification and Design Role in Validation

Verification is the process that we will test the MusicBox System whether it meets a set

of design specifications. In this process, we will look the SRS and SDD documents for

correctness of specifications. We will control that whether all functional and nonfunctional

requirements are correctly implemented according to the requirements of SRS and SDD

documents. Furthermore, we will control that whether the design viewpoints of the final

MusicBox System are met in the viewpoints part of the SDD document.

 Validation is the process that the stakeholders and developers decide if the MusicBox

System is consistent with the main goal, which is reading musical notes, transferring their

information to Arduino board and playing them through Arduino board on musical instrument

(organ).

 After the complete implementation of system, the testing process will be handled with

SDD influenced test plans and cases.

4. Design Description Information Content

4.1 Introduction

Software design description of MusicBox system analyzes how the system will be

designed and implemented. This section investigates these according to identification of the

 MusicBox SDD 1.0
 Jan 04, 2015

8

SDD, identified design stakeholders and design concerns, related design viewpoints, design

views, overlays, rationale and languages. Furthermore, this section includes design elements

which are design entities, attributes, relationships and constraints.

4.2 SDD Identification

 MusicBox will be released by the middle of June 2015 after validation and verification

tests. Prototype of the system will be shown at beginning of January 2015. Modification and

distribution of MusicBox can only be done by copyright holder who is MusIns-Pro because of

the exclusive rights property.

 Scope, references, context and summary can be found under the section “Overview”.

Glossary can be found under the section “Definitions, Acronyms and Abbreviations”.

4.3 Design Stakeholders and Their Concerns

 Stakeholders comprise a developer team which is MusIns-Pro at the Middle East

Technical University Department of Computer Engineering members. Mainly concerns of the

stakeholders are quality of the photo which loads to the system because it must have high

quality. In addition, this project may cost a little expensive.

4.4 Design Views

 Design views helps design stakeholders about focusing on design details from a specific

perspective and meeting relevant requirements. Each identified design concern must be topic of

at least one design view so that SDD is complete. Each design concerns identified in the previous

subsection is the topic of most of the design views in this document; thus, this SDD is completed.

For example, concerns about cost are topic of composition view. Moreover, concerns about

quality of photo are topic of logical view. In this document, context, composition, logical,

dependency, information, patterns use, interface, interaction and state dynamics views will be

explained in section 4.5 as their corresponding viewpoints. For some views, relevant UML

diagrams will be shown in order to clarification.

4.5 Design Viewpoints

This document describes context, composition, logical, dependency, information, patterns

use, interface, structure, and interaction and state dynamics viewpoints.

 MusicBox SDD 1.0
 Jan 04, 2015

9

Context Viewpoint: It describes the relationships, dependencies and interactions between the

system and its environment such as users and other interacting stakeholders. Interactions

between the system and its actors are very intense, hence concerns of this viewpoint is important

and suitable for MusicBox. It includes use case, context and block diagram showing the system

boundary.

Composition Viewpoint: It describes how the design subject split up into its components and

which roles these components have. It can be used in estimating cost, staffing and scheduling

duties of development team. It includes a deployment and component diagram.

Logical Viewpoint: It describes class structures, interactions between them and how they are

designed and implemented. Also it supports development and reuse of existing logical

components. It includes a class diagram which defines objects and classes, and relationships

between them.

Dependency Viewpoint: It describes the components of the system and dependencies between

these components. It gives information about shared information and order of execution of these

components.

Information Viewpoint: It describes data items, data types and classes, data stores and access

mechanisms. It gives information about data attributes.

Patterns Use Viewpoint: It describes design patterns and usage of design patterns which meet

design ideas of the project.

Interface Viewpoint: It describes the details of external and internal interfaces. It provides

information to the designers, programmers and testers before proceeding with the detailed design

of the system. This also provides designers, programmers and testers to use the system as a

random user.

Interaction Viewpoint: It describes the sequence of actions and how, why, where and at what

level actions occur in the system. It is preferred to use state dynamics views in detailed for this

project.

State Dynamics Viewpoint: It describes the internal behavior of the system. System dynamics

include modes, states, transitions and reactions to events. It gives information step by step about

the system operation. It includes state machine diagram which defines conditions, states,

transitions and relationships between them.

 MusicBox SDD 1.0
 Jan 04, 2015

10

4.6 Design Elements

 Any item which appears in a design view is named as design elements. It may be one or

some of these subcases; design entity, design relationship, design attribute and design

constraints. All design elements are defined with subcases under their corresponding viewpoint

in section 5 of the software design description.

4.7 Design Overlays

 Design overlays usually used to add information to the existing views. This concept will

be explained clearly when necessary in the design viewpoints section which is 5.

4.8 Design Rationale

 Object-Oriented approach was chosen while designing because by this way hardware part

and software part will be combined easily. Software part includes parsing and reading notes and

transmitting data. To design these lots of package were used. These packages are connected

between each other and they can be controlled separately. Furthermore, for hardware part a

package was used and there is another package to combine software and hardware parts.

4.9 Design Languages

 In this document Unified Modeling Language (UML) will be used as the modeling

language for the diagrams. The modeling language is used for emphasizing the static structure

and dynamic behavior of the system.

5. Design Viewpoints

5.1 Introduction

This section provides several main design viewpoints of MusicBox with their

corresponding design concerns and appropriate design languages. Respectively, context,

composition, logical, dependency, information, patterns, interface, structure and interaction

viewpoints are defined in the following subsections. Short descriptions relating a minimal set of

design entities, design relationships, design entity attribute, and design constraints are provided

for each viewpoint.

 MusicBox SDD 1.0
 Jan 04, 2015

11

5.2 Context viewpoint

The context viewpoint of MusicBox software shows the functions provided by a design

subject with reference to an explicit context. The services are the functions, which describes the

relationships, dependencies, and interactions between the system and its environment like users

and other stakeholders.

5.2.1 Design concerns

Design concerns consist of services, actors and system boundaries. MusicBox is formed

of the interface and the hardware equipment; there is only one type actor which uses the system.

Therefore, there is no constraint according to users. The services and the system boundaries are

established according to the musical instrument organ.

After the user integrates the MusicBox onto organ, s/he uses the Music Generation

interface for the operations like uploading the notes and playing the organ. Information flow

between the user and the MusicBox is provided by the interface. Below diagram shows the

system boundary which includes relationship between the user and the other major components

of the system.

Figure 1: Block Diagram of the MusicBox System

5.2.2 Design Elements

 One of the design entities is the actor of the system, user. Stakeholders are other design

entities of the MusicBox product. They consist of project management and developer team. The

 MusicBox SDD 1.0
 Jan 04, 2015

12

last design entity is the musical instrument, organ. Below diagram shows the design relationship

which includes provided input and received output between the user and the other major

components of the system.

Figure 2: Context Diagram of the MusicBox System

 Figure 3 given below describes system interaction and functionality with the user. There

is only one type user which uses all the functionalities related to the system. These functionalities

are setting up the product onto the musical instrument, capturing and uploading the picture,

loading and saving the music file, uploading the MusicXML file, converting the notes, playing,

replaying and stopping the music.

 MusicBox SDD 1.0
 Jan 04, 2015

13

Figure 3: Use Case Diagram of the MusicBox System

5.2.3 Example Languages

 The diagrams given in the previous subsections are created by the UML. One of these

diagrams is the block diagram describing interrelationships of a system. Other one is the context

diagram defining the boundary between the system and its environment. The last one of them is

the use case diagram showing user interactions with the system.

5.3 Composition Viewpoint

 The purpose of the composition viewpoint of Recommendation System is to define the

system as a composition of its subsystems. The project is formed by 4 main submodules: “OCR”,

“Parser”, “MusicBox” and “UserInterface”. Detailed explanation about the relations between

these modules will be explained in coming sections.

5.3.1 Design Concerns

 With the help of information in composition viewpoint, system stakeholders and

developer team can plan and control the software product. The design of this project is structured

into sub-modules and components such as interface and other packages. The project is managed

by planning, monitoring and controlling these components. All acquired information about

project provides to estimate cost, staffing, and schedule for the development effort.

http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/System

 MusicBox SDD 1.0
 Jan 04, 2015

14

 Below UML deployment diagram shows run-time (physical) decomposition of the

system.

Figure 4: Deployment Diagram of the MusicBox System

5.3.2 Design Elements

 The project is formed of interface and classes inside packages as design entities. There

are two there level packages which are “Parser”, “MusicBox” and “UserInterface” which allow

the system to be run as application.

 MusicBox package consist of subclasses named “connection” and

“mainMotorController”.

 Parser package consist of subclasses which are used for store note information and

convert musicXML file into desired type (.mip file).

 User Interface package consist of user interface and it is actions. It performs connection

between other packages via user actions.

 Detailed explanation about the relations between these modules is given below:

 MusicBox SDD 1.0
 Jan 04, 2015

15

Figure 5: Component Diagram of the MusicBox System

5.3.2.1 Function Attribute

In Parser package, the class “MusicXMLParser” parses given musicXML file and stores

information inside the “Note” vector which is designed to store note information. “Main” class

performs connection between “OCR” sub system and the parser. Also it converts note array to

format that Arduino needs.

Inside the musicBox package, the class “Connection” provides connection between user

interface and the motor controller. Data is provided Arduino serially and in order to send data

from the parser synchronously, “jscc” library is used. “MainMotorController” class controls note

servo motor interactions.

User Interface package consist of GUI class which formed of .ui file consists layout of

interface and “Actions” class which consists of actions provided by the interface.

 MusicBox SDD 1.0
 Jan 04, 2015

16

5.3.2.2 Subordinates Attribute

 GUI consists of view and controller components. The view component defines and

manages how the data is presented to the user. The controller component manages user

interaction and passes these interactions to the view and model.

 MusicBox consists of motor and its controller components. It controls motors and

manages connection between the systems.

Application Server consists of all the software part of the project. It has OCR and Parser

components which perform reading notes and prepare for the MusicBox.

5.3.3 Example Languages

A component diagram showing functional (logical) decomposition of the system and a

deployment diagram showing run-time (physical) decomposition of the system have given in the

previous sections by using UML modeling language.

5.4 Logical Viewpoint

The purpose of the Logical viewpoint is to elaborate existing and designed types and their

implementations as classes and interfaces with their structural static relationships. For each

entity, there will be a diagram to overview the entity and then a table that name, return type;

visibility of the entity/class diagram is shown in. Also, definition of each element is provided.

After all elements are explained, the class diagram that shows relationships between the classes

is drawn.

5.4.1 Design Concerns

The logical viewpoint is employed to show the development and reuse of abstractions

and their implementations. This means, object oriented programming simplifies to maintain and

modify existing code while new objects are created. Since identifying object classes is often

difficult part of object oriented design, during the implementation phase of the project there can

be some changes in object identification.

 MusicBox SDD 1.0
 Jan 04, 2015

17

5.4.2 Design Elements

The project has one sub-system named OCR, three packages named ‘parser’, ‘musicBox’

and ‘UserInterface’. All packages have total nine classes named ‘Note’, ‘MusicXMLParser’,

‘VoiceDef’, ‘XMLPart’, ‘Main’ from ‘parser’; ‘Connection and ‘MainMotorController’ from

‘musicBox’; ‘UserActions’ and ‘MainGui’ from ‘UserInterface’. All package connections can be

seen in ‘Class Diagram of the MusicBox System’, in Figure 6.

 MusicBox SDD 1.0
 Jan 04, 2015

18

Figure 6: Class Diagram of the MusicBox System

 MusicBox SDD 1.0
 Jan 04, 2015

19

5.4.2.1 VoiceDef Class

This class will be defined in the software part of the project. It will be used during

parsing musicXML file from other classes like “MusicXMLParser”. Main purpose of this class is

to form musicString structure which will be a combination of part and voice.

Diagram:

Description:

Name

Type/Return

Value Type

Visibility Definition

part int private This variable refers part value of the

musicString.

voice int private This variable refers to voice value of the

musicString.

5.4.2.2 Note Class

 This class will be defined in the software part of the project. The purpose of Note class is

keeping information about each note of the song which is contained by musicXML file.

 MusicBox SDD 1.0
 Jan 04, 2015

20

Diagram:

Description:

Name Type/Return

Value Type

Visibility Definition

value byte public This value refers the numeric value of the

note.

duration byte public This value refers to duration the duration of

the note, as milliseconds.

rest boolean public This value indicates whether this note is

rest.

type byte public This value indicates the type of the note.

getStringForNote String public

static

This function returns a MusicString

representation of the note value and

duration which indicates a note and an

octave.

 MusicBox SDD 1.0
 Jan 04, 2015

21

5.4.2.3 XMLPart Class

 This class is used as helper class for the MusicXMLParser class. It will be defined in the

software part of the project. A musical notes can store multiple instruments however this project

only interest with the organ. This class contains part information of the instrument.

Diagram:

Description:

Name Type / Return

Value Type

Visibility

Definition

ID string public This value refers the id of the part.

part_name string public This value refers the name of the part.

XMLPart void public This function is the constructor of the class

which sets empty values as default.

5.4.2.4 MusicXMLParser Class

 This class will be defined in the software part of the project. It can be seen as primary

class of the software package which uses all other classes and performs operations like parsing

musicXML file and storing all notes’ information in the designed class.

 MusicBox SDD 1.0
 Jan 04, 2015

22

Diagram:

Description:

Name Type/Return

Value Type

Visibility Definition

xomBuilder Builder private

This value responsible for creating XOM

Document objects file by reading an XML

document

xomDoc

Document

private

This value represents a complete XML

document including its root element and

others

volumes String[0..*] private This value is volume of the song.

tempo

int

public

This value refers to tempo of the current

song. It is measured in “pulses per quarter".

The parser uses this value to convert note

durations, which are relative values and not

directly related to time measurements, into

actual times.

 MusicBox SDD 1.0
 Jan 04, 2015

23

noteArr

Note[0..*]

public

This array stores whole notes of the current

song for later usage. Note is a structure

which is defined by developer.

MusicXMLParser()

void

public

This function is the constructor of the given

class. It will initialize the default values.

parse()

void

public

This function will be responsible for

starting parsing musicXML file. It will be

called via filename.

parse()

void

public

Thisfunction will be responsible for starting

parsing musicXML file. It overrides parse

function with no parameters.

parsePart()

void

public

This function will be responsible for

parsing one part. It can be called via three

parameters which are, entire part of the

music and an array of XMLpart classes that

contains instrument information of the part

parsePartHeader()

void

public

This function is responsible for parsing an

element in the part- list. It can be called

with an element and an array of XMLpart

classes which contains partlist elements

parseNote() void public This function is responsible for parsing

MusicXML note Element. It can be called

with the note Element . Finally it creates

Note object and after storing all information

 MusicBox SDD 1.0
 Jan 04, 2015

24

in it, pushes it to Note array for later step.

createMusicFile()

File public This function is responsible for creating a

new file for Arduino.

5.4.2.5 Main Class

 This class defined in the parser package of the project. It is main class of the related

package. It uses classes and operations which are defined in OCR package. It manages the

conversion between image file to musicXML file. Also it gets necessary information for the

Arduino from the musicXML file.

Diagram:

Description:

Name Type/Return

Value Type

Visibility Definition

Main

int

public

This function is the main function which manages

connection between OCR and the parsing xml

file.

5.4.2.6 MotorController Class

 This class will be defined in the hardware part of the project in MusicBox package. It

contains a variable which name is motorPinNo. Moreover, this class provides to control servo

motors and solenoids.

 MusicBox SDD 1.0
 Jan 04, 2015

25

Diagram:

Description:

Name Type/Return

Value Type

Visibility Definition

motorPinNo

int

public

This value detects which motor attaches which

Arduino digital pin. Moreover, this value is

essential to match the related note and the motor.

setup()

void

public

This function is responsible to set motors and

solenoids. The motors and solenoids that attach

which digital input can be seen in this function.

loop()

void

public

This function is responsible to run correct motors

and solenoids. Furthermore, the related motors

and solenoids can be stopped in this function.

5.4.2.7 Connection Class

 This class will be defined in the musicBox package of the whole project. This class

serves as a bridge between software part and hardware part. It provides a connection between the

user interface and the hardware.

 MusicBox SDD 1.0
 Jan 04, 2015

26

Diagram:

Description:

Name

Type / Return

Value Type

Visibility Definition

connection()

void

public

This function is responsible for the

connection task between user interface and

hardware part.

sendData()

void

public

This function is responsible for the data

sending to microcontroller which is provided

by the Parser and the OCR packages.

5.4.2.8 UserActions Class

 This class is defined in the user interface package of the project. It performs user actions

performed via user interface and provides connection between hardware part and software part of

the project.

Diagram:

 MusicBox SDD 1.0
 Jan 04, 2015

27

Description:

Name

Type / Return

Value Type

Visibility Definition

upload()

void

public

This function performs uploading

musicXML file, image file or “.mip” file to

the project.

convert()

void

public

This function performs conversion operation

from the uploaded file to “.mip” format.

saveAs() void public This function is responsible for the saving

note information into .mip format from

given file.

capture() void public This function provides user the capture

picture via user interace

play() void public This function is responsible for making

organ play music with data which is read

from file.

stop() void public This function provides user to stop music

while musicBox playing.

5.4.2.9 MainGui Class

 This class will be defined in the musicBox package of the whole project. This class is

responsible for providing layout information of the user interface. (It is given as .ui format)

Diagram:

 MusicBox SDD 1.0
 Jan 04, 2015

28

Description:

Since it is implemented as ‘.ui’ format there is not any attribute or operation defined by

the developer.

5.4.2.10 OCR Sub-System

 OCR is a subsystem which consists of all the Audiveris source code (optical music

recognition).

Diagram:

Description:

This system has many packages and classes inside and since it is not designed by the

developer, they are not indicated in the given diagram above.

5.4.3 Example Languages

A class diagram which describes the structure of a system by showing classes of the

system has given in the previous sections by using UML modeling language.

5.5 Dependency Viewpoint

The Dependency viewpoint specifies the relationships of interconnection and access

among entities. These relationships include shared information, order of execution, or

parameterization of interfaces.

5.5.1 Design Concerns

Dependency viewpoint helps maintainers to isolate entities causing system failures or

resource bottlenecks. In producing the system integration plan, the system is identified with the

sub-modules and the components which are dependent to each other.

 MusicBox SDD 1.0
 Jan 04, 2015

29

5.5.2 Design elements

The product is composed of the user interface and classes inside packages as design

entities. Detailed explanation about the dependency between the entities and the modules are

explained with the component and deployment diagrams in the section 5.3.2.

5.5.2.1 Dependencies Attribute

A description of the relationships among the entities is explained in section 5.3.2.1.

5.5.3 Example Languages

The component diagram showing functional (logical) decomposition of the system in the

section 5.3.2 and the package diagram depicting the dependencies between the packages in the

section 5.9.2 are created by UML.

5.6 Information Viewpoint

This section is not required for our project.

5.7 Patterns Use Viewpoint

This section is not required for our project.

5.8 Interface Viewpoint

 In this part of document, the details of external and internal interfaces will be defined.

There shall be two interfaces in MusicBox System, which are System-Parser Interface and

System-Arduino Interface. Also there is one user interface in our system.

 All communication related to Arduino board will be established via USB.

5.8.1 Design Concerns

 Interface viewpoint provides information to the designers, developers and testers before

proceeding with the detailed design of the system. It also informs them about how cooperating

entities will interact. With the ease of each interface descriptions, designers and developers can

know internal and external connections of system to develop it. This contributes ease of

maintenance.

5.8.2 Design Elements

 In this subsection, user interface of MusicBox System is shown. In addition, usage of

these interfaces is given in details.

http://en.wikipedia.org/wiki/Dependency_(UML)
http://en.wikipedia.org/wiki/Package_(UML)

 MusicBox SDD 1.0
 Jan 04, 2015

30

Figure 7: User Interface of MusicBox

 Figure 7 shows the only interface of the MusicBox System. This interface firstly provides

users to load a file capture an image or save as any transition format (such as .xml and .mip) of

program. If user load a file, the path of loaded file is shown in ‘File:’ line. If user chooses

‘Capture an Image’ button, the captured image is saved on path of MusicBox program

executable. Then the path of captured image is shown on ‘File:’ line of user interface. If user

chooses ‘Save as’ button, user can save any transition formats of MusicBox system. These

formats are .xml, .mxl and .mip. ‘Convert’ button of user interface makes all transitions about

playing musical notes and prepares the last format, which is .mip, for sending it to Arduino.

When ‘Convert’ button is pressed, ‘Processing’ progress bar of user interface starts progressing.

Its reaching to 100% means that the musical notes are ready to play. These all conversion

operations from image to .mip file are done by System-Parser Interface, which is explained

precisely in Section 5.3 and Section 5.4 of this SDD document.

After all conversion operations, user can simply play and stop from ‘Mini Music Box

Player’ part of user interface. There are two buttons named ‘Play’ and ‘Stop’, which handles

playing and stopping operations of MusicBox System. These playing and stopping operations are

done by System-Arduino Interface, which is explained precisely in Section 5.3 and 5.4 of this

SDD document.

 MusicBox SDD 1.0
 Jan 04, 2015

31

In the ‘Logs:’ part of user interface, developers mainly gives information about usage of

program to the user. Errors and warnings are also given from here to the user. An error is a

significant problem, such as wrong file type. A warning is not a necessarily significant, but might

indicate a possible future problem, such as low image resolution. Information describes the

wanted steps and the successful operations of a MusicBox System.

5.8.3 Example Languages

 All necessary UML component diagrams have given in the previous sections of this SDD

document.

5.9 Structure Viewpoint

5.9.1 Design Concerns

 Structure viewpoint informs user and the developer about the interaction between the

packages in the system.

5.9.2 Design Elements

Figure 8: Package Diagram of the MusicBox System

 Figure 8 above shows the package diagram of the whole MusicBox system. User can use

the system via User Interface which connects hardware and software parts of the system.

Developer manages interaction between parts.

 MusicBox SDD 1.0
 Jan 04, 2015

32

 Detailed component diagram is given in section 5.3 and class diagram given in section

5.4.

5.9.3 Example languages

UML package diagram showing interaction between the parts of the system and the user

has given in the previous sections by using UML modeling language.

5.10 Interaction viewpoint

In this section, main functionalities of the system are given by the help of sequence

diagrams. Moreover, it defines strategies for interaction among entities.

5.10.1 Design Concerns

For designers, this section includes evaluating allocation of responsibilities in

collaborations and description of interactions in terms of messages among affected objects in

fulfilling required actions with the help of sequence diagrams.

5.10.2 Design Elements

Given sub-sections below, user and system interactions are illustrated.

5.10.2.1 Hardware Interactions

Figure 9: Sequence Diagram of the Hardware Interactions

 MusicBox SDD 1.0
 Jan 04, 2015

33

Above sequence diagram is related to play and stop functionality. For playing the music,

user should click “play” button that is seen in “MainGUI”. It triggers play function of the

“UserActions”. Firstly, connection is established between the “Connection” object and

“MainMotorController”. Then, data is sent to “MainMotorController”. In

“MainMotorController”, after setup function is called, loop function executes and motors begin

to motion. If the user presses the stop button in the user interface while lasting loop, stop

function of the “UserActions” is triggered and stop information is sent to

“MainMotorController”. This process provides to return of sendData function and the music

stops.

5.10.2.2 Software and Parser Interactions

Figure 10: Sequence Diagram of the Software Interactions

 MusicBox SDD 1.0
 Jan 04, 2015

34

 Given sequence diagram above shows the user and system interaction related with the

upload and the convert button in the user interface. Upload functionality can be used by the user

via user interface. This provides user to upload musicXML file, image file or previously

generated “.mip” file.

 Convert button can be reached via button inside the user interface. When user clicked to

button, it triggers convert functionality in the “UserActions” class. This functionality provides

conversion to “.mip” format from the uploaded file. For example, if it is an image file, it first

converts file to musicXML file and then parses this output into “.mip” format. If it is a

musicXML file, it directly parses it to “.mip” format. Also final output namely “.mip” format is

stored in the main object in the parser package.

5.10.2.3 GUI Interactions

Figure 11: Sequence Diagram of the Software and GUI Interactions

 Given sequence diagram above shows the “capture” and “saveAs” actions in the user

interface. “saveAs” button provides user to save converted file namely “.mip file” into desired

 MusicBox SDD 1.0
 Jan 04, 2015

35

format like “musicXML” or “.mip” file into the personal computer for later usage. Stored file

can be used later to play music via application.

“Capture” button provides user to take picture via user interface by the help of connected

camera. Captured image is directly used by the OCR and the Parser and it makes ready image

5.10.3 Examples Languages

Sequence diagrams which show how processes operate with one another and in what

order has given in the previous section by using UML modeling language.

5.11 State Dynamics Viewpoint

In this section, system behavior and states of the system are given via the state transition

diagram.

5.11.1 Design Concerns

Designers, developers and testers are informed about dynamic view of the system which

includes modes, states, transitions and reactions to events.

5.11.2 Design elements

MusicBox system software has five states named “ConnectionState”, “PictureState”,

“musicXML”, “Note” and “.mip file” as shown in the Figure Z. “ConnectionState” is the first

state to connect to the product. After “ConnectionState”, the next state can be “PictureState”,

“musicXML” or “Note” depending upon uploading a picture or a musicXML file or loading

“.mip file”. If next state is “PictureState”, the notes in the picture are converted musicXML file

and transferred to “musicXML” state. If next state is “musicXML”, the notes in the musicXML

file is read and transferred to the “Note” state. After “Note” state, notes are converted to .mip file

and music can be played. If the music is stopped, return the “Connection State”. When the

product is disconnected, it stays on end state.

 MusicBox SDD 1.0
 Jan 04, 2015

36

Figure 12: State Machine Diagram of the MusicBox System

5.11.3 Example languages

State machine diagram given in the previous section which shows the internal behavior of

the system by state transitions is created by the UML.

