
MUSINS-PRO

SOFTWARE
REQUIREMENTS
SPECIFICATION

CENG490

Yağmur ERTAŞ - 1819333

Duygu ABADAN - 1818863
Baler İLHAN - 1819853
Anıl ARPACI - 1818954

 11/30/2014

 MusicBox SRS 1.0
 Nov 30, 2014

1

Table of Contents

1. Introduction .. 4

1.1 Problem Definition .. 4

1.2 Purpose .. 4

1.3 Scope ... 4

1.4 Definitions, acronyms, and abbreviations ... 4

1.5 References ... 6

1.6 Overview ... 6

2. Overall description .. 7

2.1 Product perspective ... 7

2.1.1 System interfaces .. 8

2.1.2 User interfaces .. 8

2.1.3 Hardware interfaces .. 9

2.1.4 Software interfaces ... 9

2.1.5 Communication interfaces .. 9

2.1.6 Memory .. 9

2.1.7 Operations .. 9

2.1.8 Site adaptation requirements .. 9

2.2 Product functions ... 10

2.2.1 Setup the Product Functionality ... 10

2.2.2 Capture the Picture Functionality ... 10

2.2.3 Upload the MusicXML Functionality .. 10

2.2.4 Convert the Notes Functionality ... 11

2.2.5 Play the Music Functionality .. 11

2.2.6 Stop the Music Functionality.. 11

2.2.7 Replay the Music Functionality .. 11

2.2.8 Save the Music File Functionality .. 11

2.2.9 Load the Music File Functionality ... 11

2.2.10 Upload the Picture Functionality .. 11

 MusicBox SRS 1.0
 Nov 30, 2014

2

2.3 User Characteristics ... 11

2.4 Constraints ... 12

2.4.1 Hardware Requirement ... 12

2.4.2 Software Requirements .. 12

2.4.3 Other Requirements .. 12

2.5 Assumptions and Dependencies .. 12

3. Specific requirements .. 13

3.1 Interface Requirements .. 13

3.1.1 User Interface ... 13

3.2 Functional Requirements ... 15

3.2.1 Use Case 01: Setup the Product .. 15

3.2.2 Use Case 02: Upload the Picture .. 15

3.2.3 Use Case 03: Capture the Picture ... 16

3.2.4 Use Case 04: Upload the MusicXML .. 16

3.2.5 Use Case 05: Load the Music File .. 17

3.2.6 Use Case 06: Convert the Notes ... 17

3.2.7 Use Case 07: Save the Music File .. 18

3.2.8 Use Case 08: Play the Music .. 18

3.2.9 Use Case 09: Replay the Music .. 19

3.2.10 Use Case 10: Stop the Music .. 19

3.3 Non-functional Requirements ... 20

3.3.1 Performance requirements .. 20

3.3.2 Design constraints .. 20

3.3.3 Software System Attributes .. 20

4. Data Model and Description .. 22

4.1 Data Description .. 22

4.1.1 Data Objects ... 22

4.1.2 Data dictionary ... 28

5. Behavioral Model and Description .. 30

5.1 Description for Software Behavior .. 30

5.2 State Transition Diagrams ... 31

 MusicBox SRS 1.0
 Nov 30, 2014

3

6. Planning .. 32

6.1 Team Structure .. 32

6.2 Estimation .. 32

6.3 Process Model ... 33

7. Conclusion ... 33

8. Supporting information ... 34

8.1 Index .. 34

8.2 Appendices .. 34

 MusicBox SRS 1.0
 Nov 30, 2014

4

1. Introduction

 This is a software requirement specification document for musical instrument playing

system. Firstly, the purpose and scope of this document will be explained. Secondly, the overall

description of the system will be given. Then specific requirements will be stated, data models

and behavioral models together with their description in this document. Lastly, development plan

will be introduced and the document will be concluded.

1.1 Problem Definition

 Nowadays, many people are involved in creation part of the music. But most of these

people do not have any musical education for playing instruments; they are just trying to do it.

So, there is no any self-playing musical system, which takes a photograph of any musical notes to

play, for this kind of people as a commercial product.

1.2 Purpose

 The purpose of this document is to present a detailed description of musical instrument

playing system. It will explain the purpose and features of the system, the interfaces of the

system, what the system will do, the constraints under which it must operate and how the system

will react to external stimuli. This document is aimed for both the customer for its approval and a

reference for developing the system for the development team.

1.3 Scope

 The developed product is a system that can play musical instrument with just musical

notes. System will have options that loading image file or capturing image. Any proper image file

can be loaded to system for playing. With this property, the playing musical notes in a musical

instrument will be done with a very simple way. Objective of the system is to make playing

musical instrument easier for anybody who can interested in music.

1.4 Definitions, acronyms, and abbreviations

 All the definitions, acronyms and abbreviations which are used in this document are described

in the following table.

 MusicBox SRS 1.0
 Nov 30, 2014

5

Block diagram A diagram showing in schematic form the general arrangement of the parts or

components of a complex system or process.

Class Diagram A type of static structure diagram in UML that describes the structure of a

system by showing the system's classes, their attributes, operations (or

methods), and the relationships among the classes

DPI Dots Per Inch

IDE Integrated Development Environment

IEEE Standards International Electric Electronic Engineering Standards 830

JRE Java Runtime Environment

MP Megapixel

MusicXML An XML based file format for representing musical notation.

Octave An interval between one musical pitch and another with half or double its

frequency.

OMR Optical Mark Recognition

PC Personal Computer

Rest An interval of silence in a piece of music, marked by a symbol indicating the

length of the pause.

Score A written form of a musical composition.

Score Sheet A handwritten or printed for of music notation that uses musical symbols.

SDK Software Development Kit

SRS Software Requirements Specifications

http://en.wikipedia.org/wiki/Interval_(music)
http://en.wikipedia.org/wiki/Pitch_(music)
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Silence
http://en.wikipedia.org/wiki/Music

 MusicBox SRS 1.0
 Nov 30, 2014

6

StarUML Design tool of diagrams

State Transition

Diagram

A type of static structure diagram in UML that describes the transition of the

system functions

USB Universal Serial Bus

Use Case

Diagram

A type of static structure diagram in UML that describes user's interaction

with the system

User Person who wants to use the system

User Interface An interface that our system contact with the user of the system. It gets all

needed information for its running, from user to our system.

XML Extensible Markup Language

.bmp Bitmap image file format

.mip Developer designed file format (MusIns-Pro)

.tif, .tiff Tagged Image File Format

Table 1: Definitions and Acronyms

1.5 References

 [1] IEEE. IEEE Std 830-1998 IEEE Recommended Practice for Software Requirements

Specifications. IEEE Computer Society, 1998.

 [2] StarUML 5.0 User Guide. (2005). Retrieved from http://staruml.sourceforge.net/docs/user-

guide(en)/toc.html

1.6 Overview

 The next chapter, the Overall Description section, of this document gives an overview of

the functionality of the system. It describes the informal requirements and is used to establish a

 MusicBox SRS 1.0
 Nov 30, 2014

7

context for the technical requirements specification in the next chapter. Furthermore, the chapter

also puts into words the system constraints and assumptions about the system.

 The third chapter, Requirements Specification section, of this document is written

primarily for the developers and describes in technical terms the details of the functionality of the

product and the description of the different system interfaces.

 Both second and third sections of the document describe the same system in its entirety,

but are intended for different audiences and thus use different language.

 The fourth chapter has diagrams, explanations and statements about classes which contain

data and their relationships in this system.

 In the fifth chapter of this document, how the transitions states of this system are set up

and task of these states will be explained.

 In the last chapters, how is our team and project planning, and conclusion are written to

inform readers of this document.

2. Overall description

 In this part, the general factors that affect the software and hardware part of the product

and its requirements will be explained shortly. The detailed information will be given in section

3.

2.1 Product perspective

 Music box is the product which reads notes and plays musical instrument. The product

comprises of software part and hardware equipment. This product is developed by independent

software. Hardware equipment of the product is dependent to the musical instrument organ.

Software part provides reading notes from the file which is created by capturing or uploading

photo, uploading musicXML file or loading .mip file by the user. ”.mip” is own extension of the

product. Passing from the software part to hardware part realizes reading data from the created

notes file and sending data to hardware. The hardware part provides playing instrument by servo

motors and solenoids which are programmed by Arduino Mega 2560.

 The product with an interface and the hardware part has only one kind actor shown as the

Figure 1.

 MusicBox SRS 1.0
 Nov 30, 2014

8

Figure 1: Block diagram of the product

2.1.1 System interfaces

 The Music Box is dependent product; it needs to be integrated into musical instrument.

By using the product, in the future when user gives a score to the system, they can listen to music

from musical instrument even if they do not play the musical instrument. Java is used for code

and design of the system and Arduino IDE is used for programming the motors which press the

ivories.

2.1.2 User interfaces

 The user interface of Music Box is very simple and error-susceptible. One screen will be

visible to the user during the software execution. This screen contains title of the product, six

buttons for the user functionalities and the field to drag and drop the file. Because of the product

will be supported by the Windows, user interface will be shown in the computers with Windows

operating system. Customization feature will not be available and interface elements will be

locked. Interface will be resizable and it is compatible with all kind of computers with JRE.

 All the users who buy the product can use the system. The user will select any

functionality via the user interface. These functionalities are loading music file, capturing an

image which includes the musical notes, starting to play musical instrument and stopping it.

 MusicBox SRS 1.0
 Nov 30, 2014

9

 When the user uploads the file, if the files are not proper for the system or if the system

loses the connection, error messages appear.

2.1.3 Hardware interfaces

The project has hardware components. To run this component, the system needs some

interfaces. Firstly, the user has to a computer Moreover, this computer can take a photo or the

user must have a tool which can take a photo and the user can upload this picture to computer.

Furthermore, the organ is necessary. It has at least two octaves. Hardware component of the

project are portable and it can suitable for every organ.

2.1.4 Software interfaces

 The software system will be designed with Java programming language. Thus java

runtime environment (JRE) will be necessary to use this product. Also this system can be used

with Windows 7 and higher operating system. Except that it can be used by any user who has a

personal computer with Windows.

 Software interface will have only one screen which achieves all the functionalities. User

will be able to manage the product via this only interface, user interface. For helper browser

windows of MusicBox system, Java libraries will be used.

2.1.5 Communication interfaces

 The MusicBox system will communicate with computer and electronic device via USB

protocol for connection, communication and power supply.

2.1.6 Memory

 Memory constraint is unnecessary for this product.

2.1.7 Operations

 The operations are explained in User Interfaces section (2.1.2) in detailed. Hence, it will

not be mentioned again here.

2.1.8 Site adaptation requirements

 There is no need for any adaptation for using this product. For using the product, it is

sufficient a computer with Windows operation system.

 MusicBox SRS 1.0
 Nov 30, 2014

10

2.2 Product functions

MusicBox system provides many menu functionalities to user for managing product. The

functionalities are explained in later parts of this document in detailed version. This section provides

brief summary of functionalities on the system. In the given use case diagram below provides a better

understanding of the general system.

Figure 2: Use case diagram of the product

2.2.1 Setup the Product Functionality

 User should use this functionality after integrating the product into organ via computer

and plug in.

2.2.2 Capture the Picture Functionality

 Users can capture the score sheet picture by using this functionality.

2.2.3 Upload the MusicXML Functionality

 Users can upload musicXML directly to the system via this functionality.

 MusicBox SRS 1.0
 Nov 30, 2014

11

2.2.4 Convert the Notes Functionality

 This functionality provides to conversion between the picture and developer defined

music file. After this step system will be ready to play the song.

2.2.5 Play the Music Functionality

 This functionality makes the system play the song.

2.2.6 Stop the Music Functionality

 User can stop the song during process by using this functionality.

2.2.7 Replay the Music Functionality

 User can replay the song in the loaded file by using only hardware by this functionality.

2.2.8 Save the Music File Functionality

 Developer created file can be saved for later usage via this functionality.

2.2.9 Load the Music File Functionality

 System can be used by loading application created files (.mip files) via this functionality.

2.2.10 Upload the Picture Functionality

 Users can use product by uploading score sheets via this functionality.

2.3 User Characteristics

 The product generally will be used by people who interests with music. This user type can

be wants to play a musical instrument. Moreover, they can be wants to learn a musical

instrument. Furthermore, this user type can be wants to compose a melody using this product.

Besides, the interface of the product is user friendly. Hence, this user type is expected to

have basic level of computer knowledge and experience. In addition, the user type has basic level

of music knowledge.

 MusicBox SRS 1.0
 Nov 30, 2014

12

2.4 Constraints

2.4.1 Hardware Requirement

 The computer shall have USB connection to using the product.

 The computer shall have necessary picture requirement to upload the picture.

 If the computer shall not have necessary picture requirement, the user shall have a

components which can be taken a photo.

 This product shall work on with an organ which has at least two octaves.

 The product shall be fed with a power supply.

2.4.2 Software Requirements

 This product shall work on Windows 7 operating system or higher.

 JRE 7 or higher shall be necessary to run the system.

 Minimum photograph quality shall be 5 MP or 300 DPI intensity.

 The computer shall have the MusicBox system installed.

2.4.3 Other Requirements

 Safety precautions should have taken while using device.

 Safety precautions should have taken when using voltage source.

2.5 Assumptions and Dependencies

These are not strict requirements for the future releases but rather the additional

functionalities that may or may not be integrated in later versions. The sole purpose is to present

the points considered on extensibility and to emphasize the potential for additional features.

 Different language options for the interface.

 Slow down and speed up option can be added to the system.

 Different music formats can be used in the products.

 Different picture formats can be used in the products.

 This product can be fit to the other musical instruments.

 Different operating systems can be supported.

 Mobility can be taken into account.

 MusicBox SRS 1.0
 Nov 30, 2014

13

3. Specific requirements

 This section will describe software requirements in detail as subsections which are

interface requirements, functional requirements and non-functional requirements.

3.1 Interface Requirements

3.1.1 User Interface

The user who wants to play music with MusicBox system can simply initiate the

program. After initiation of system, the main interface of MusicBox welcomes the user. The

main interface is the only user interface of the whole system and it includes all functionalities of

the system. This user interface can be seen in Figure 3.

Figure 3: User Interface of Music Box

There are three way for initiating MusicBox system. Firstly, there is a ‘drag and drop file’

part at the left top of the page for initiating the system with proper files, such as .tiff, .bmp, .mip

and MusicXML file; therefore user can drag these files to this ‘drag and drop file’ box. Secondly,

user can initiate the system with loading a file by clicking ‘Load a file’ and browsing a file to

load through browser library of Java. Lastly, there is ‘capture an image’ button at the right top of

the page. By clicking that button, user can capture an image through camera connected to PC.

 MusicBox SRS 1.0
 Nov 30, 2014

14

After initiating MusicBox system, user can save .mip MusicBox file by clicking ‘Save as

.mip file’ button. User can browse and select saving place on PC through browser library of Java.

This .mip file has all information about the image’s musical notes and it is ready to play with

instrument.

After initiating MusicBox system, user also directly can play instrument with clicking

‘CONVERT !’ button. This button converts loaded image file to .mip file and sends it to Arduino

board for playing it on musical instrument. When this conversion is done, loaded notes are ready

for playing. Also ‘Play’ and ‘Stop’ buttons, which are placed on the bottom of the interface

window, become active after that conversion.

There are two parts on the bottom of the interface. ‘Logs:’ part shows all returns of

system to the user for his/her information; such as error information about loading file, process

information about conversion, etc. The ‘Logs’ part answers all interaction of user for make

system easier to use. ‘Mini Music Box Player’ part of the interface includes 2 buttons on it and

they will be active if and only if conversion is done successfully. ‘Play’ button starts the playing

of the notes on instrument. User can stop the playing music by simply clicking ‘Stop’ button. If a

user stops the playing music, he/she can continue playing by clicking ‘Play’ button again.

3.1.2 Hardware Interface

 Since the system’s application runs on PC and there is an Arduino board connected to PC,

the only hardware interface is the Arduino’s board. There is only ‘Reset’ button on it and by

pushing it user can replay last loaded music.

3.1.3 Software Interface

 The only software interface of our product is the main interface of the product which is

the user interface in terms of diagrams. Users can use all aspects of product with this interface.

3.1.4 Communication Interface

 The communication between the system and Arduino is done through USB connection.

This communication is handled by the underlying operating system through our Java code. So

there is no direct interface about communication.

 MusicBox SRS 1.0
 Nov 30, 2014

15

3.2 Functional Requirements

3.2.1 Use Case 01: Setup the Product

Diagram:

Brief Description

 The users who want to use the product, should integrate the product into organ and setup

the system via computer and plug-in.

Initial Step-By-Step Description

1. The user should integrate the product into organ.

2. After integration, the user should make a power supply connection and USB connection to

computer.

3. The user should install the program while getting started.

4. After installation, the product is ready to use with the user interface which appears on the

screen.

3.2.2 Use Case 02: Upload the Picture

Diagram:

Brief Description

 All the users, who want to play the music via the product, can upload the picture which

includes musical notes.

 MusicBox SRS 1.0
 Nov 30, 2014

16

Initial Step-By-Step Description

1. The user should browse and select the picture file which has “.bmp” or “.tiff” or “.mip” file

extension by clicking the “Load a file” button or drag the file to the screen directly.

2. After selection the picture file, the user should click load button and upload it.

3.2.3 Use Case 03: Capture the Picture

Diagram:

Brief Description

 All the users, who want to play the music via the product, can capture the picture which

includes musical notes.

Initial Step-By-Step Description

1. The user should capture the picture of musical notes by clicking the “Capture an image” button

to convert.

2. If the user wants to upload any captured musical notes and if the files are not in the “.bmp” or

“.tiff” file format, s/he should convert the files to one of these formats and upload to the system

as mentioned in the use case 02.

3.2.4 Use Case 04: Upload the MusicXML

Diagram:

 MusicBox SRS 1.0
 Nov 30, 2014

17

Brief Description

 Other choice for the users, who want to play the song, is uploading the MusicXML file to

the system.

Initial Step-By-Step Description

1. In order to use this function, the user browses and selects the MusicXML file by clicking the

“Load a file” button placed on the user interface or drag the file to the screen directly.

2. After selection the picture file, the user should click load button and upload it.

3.2.5 Use Case 05: Load the Music File

Diagram:

Brief Description

 All the users, who want to play the music via the product, can load the music file which

was created by this application previously.

Initial Step-By-Step Description

1. In order to use this function, the user browses and selects the file with “.mip” extension by

clicking the “Load a file” button placed on the user interface or drag the file to the screen

directly.

2. After selection the file, the user should click load button and upload it.

3.2.6 Use Case 06: Convert the Notes

Diagram:

 MusicBox SRS 1.0
 Nov 30, 2014

18

Brief Description

 After the user uploads any file, s/he should convert the notes to make ready to play.

Initial Step-By-Step Description

1. In order to use this function, the user should upload any music file.

2. After uploading file, the user should press the “CONVERT!” button placed on the user

interface to make ready to play.

3.2.7 Use Case 07: Save the Music File

Diagram:

Brief Description

 After converting the music file, the user can save the file which is created by the

application and store it to use again.

Initial Step-By-Step Description

1. In order to use this function, the user should convert uploaded music file.

2. If the user will want to play the song again in the future, s/he should click “Save as .mip file”

button and save the converted file by the application with “.mip” file extension.

3.2.8 Use Case 08: Play the Music

Diagram:

 MusicBox SRS 1.0
 Nov 30, 2014

19

Brief Description

 After converting the music file, the user presses the button to run the system and make

organ play the song.

Initial Step-By-Step Description

1. In order to use this function, the user should convert uploaded music file.

2. After converting the file, the user should press the “Play” button placed on the user interface to

play the song by the product.

3.2.9 Use Case 09: Replay the Music

Diagram:

Brief Description

 The user should be able to replay the music by resetting the hardware part of the product.

Initial Step-By-Step Description

1. In order to use this function, the user should play any music formerly.

2. When the user disconnects USB connection or plugs out the product, the last played music

information stays in the product. Therefore, the user can replay the last played music by the

“Reset” button of the product, even if s/he does not make a computer connection.

3.2.10 Use Case 10: Stop the Music

Diagram:

 MusicBox SRS 1.0
 Nov 30, 2014

20

Brief Description

 The user should be able to stop the music by the button placed on the user interface.

Initial Step-By-Step Description

1. In order to use this function, the user should play the music.

2. If the user wants to stop the music, s/he should press the “Stop” button.

3.3 Non-functional Requirements

3.3.1 Performance requirements

Communication between the system and the product is very important issue in this project

since it is necessary to load music information in the device. If the product connects with better

USB connection, the speed of product will be faster. Furthermore, loading the picture time is at

most 10 seconds. On Windows operating system, the product will be started automatically and it

will be directly ready to run. In addition, parsing part and reading notes for 1 page of score sheet

will work very fast and the user will never wait more than 5 seconds for this stages.

3.3.2 Design constraints

 Arduino boards will be used for controlling stepper motors and solenoids.

 For the transition between image file to .mip file, MusicXML file will be used and

supported for loading file.

 For board programming, Arduino Mega will be used.

 For parse the file, connection between Arduino and design of the user interface will be

implemented with Java.

 For the diagrams in the project, UML standards will be used.

 For the reporting, IEEE standards will be used.

3.3.3 Software System Attributes

 In this sub-section, the system attributes which makes the system get closer the perfect

system will be discussed.

 MusicBox SRS 1.0
 Nov 30, 2014

21

3.3.3.1 Reliability

 The most important attribute of the system is reliability as every other product. To provide

user a quality and reliable product, the system will be tested and possible errors will be

minimized. The system shall provide explanatory messages when an unexpected event occurs.

3.3.3.2 Portability

 The project will be developed by using common technologies and tools. Furthermore, the

system which will be developed shall be portable. In other words, our product will be portable

and this product can be used any model of the organ. This product is detachable for every organ

which has at least two octaves. Also it can connect any kind of personal computer that has USB

port and JRE.

3.3.3.2 Security

 The system which will be developed can reach every people who buy our products. There

is not any security system or restriction on this product.

3.3.3.3 Availability

 Users shall be able to use the product every time if they have necessary hardware

components and electricity. Software part of the system is also available at every time. If the

system crashes, there will be no data loss but user must be start over with loading an image to the

system.

3.3.3.4 Maintainability

In order to establish maintainability, all documentations about the software should be very

detailed and understandable, and they should be prepared in IEEE standard 830-1998.

Furthermore, it should be avoided from the complexity.

3.3.3.5 Safety

 Since the project is an electrical system, it will be controlled the system electric leakage.

The system shall have no electric which can thread people’s lives.

 MusicBox SRS 1.0
 Nov 30, 2014

22

3.3.3.6 Integrability

 The design of the system shall be enterable as it can be maintained easily. The system will

be designed in a way that allows addition of different musical instruments because of the portable

and removable. Current hardware constraints are allowed these additions. As a result of this

situation, this product can be used by many people among the world.

4. Data Model and Description

 This part of the SRS is about classes which contains data and their relationships.

4.1 Data Description

 In this section, data objects that will be managed and manipulated by the software are

described.

4.1.1 Data Objects

 This sub-part explains the classes which contain data variables and functions which

updates data variables.

4.1.1.1 VoiceDef Class

 This class will be defined in the software part of the project. It will be used during parsing

musicXML file from other classes like “MusicXMLParser”. Main purpose of this class is to form

musicString structure which will be a combination of part and voice.

Diagram:

Description:

Name Type/Return Value

Type

Visibility Definition

part int private This variable refers part value of the musicString.

 MusicBox SRS 1.0
 Nov 30, 2014

23

voice int private This variable refers to voice value of the

musicString.

4.1.1.2 Note Class

 This class will be defined in the software part of the project. The purpose of Note class is

keeping information about each note of the song which is contained by musicXML file.

Diagram:

Description:

Name Type /

Return Value

Type

Visibility Definition

value byte public This value refers the numeric value of the note.

duration byte public This value refers to duration the duration of the

note, as milliseconds.

rest boolean public This value indicates whether this note is rest.

type byte public This value indicates the type of the note.

getStringForNote String public

static

This function returns a MusicString

representation of the note value and duration

which indicates a note and an octave.

 MusicBox SRS 1.0
 Nov 30, 2014

24

4.1.1.3 XMLPart Class

 This class is used as helper class for the MusicXMLParser class. It will be defined in the

software part of the project. A musical notes can store multiple instruments however this project

only interest with the organ. This class contains part information of the instrument.

Diagram:

Description:

Name Type / Return

Value Type

Visibility Definition

ID string public This value refers the id of the part.

part_name string public This value refers the name of the part.

XMLPart void public This function is the constructor of the class which

sets empty values as default.

4.1.1.4 MusicXMLParser Class

 This class will be defined in the software part of the project. It can be seen as main class

of the software package which uses all other classes and performs operations like parsing

musicXML file and storing all notes’ information in the designed class.

 MusicBox SRS 1.0
 Nov 30, 2014

25

Diagram:

Description:

Name Type /

Return

Value Type

Visibility Definition

xomBuilder Builder private This value responsible for creating XOM

Document objects file by reading an XML

document

xomDoc Document private This value represents a complete XML

document including its root element and others

volumes String[0..*] private This value is volume of the song.

tempo int public This value refers to tempo of the current song.

It is measured in "pulses per quarter". The

parser uses this value to convert note durations,

which are relative values and not directly

 MusicBox SRS 1.0
 Nov 30, 2014

26

related to time measurements, into actual times.

noteArr Note[0..*] public This array stores whole notes of the current

song for later usage. Note is a structure which

is defined by developer.

MusicXMLParser() void public This function is the constructor of the given

class. It will initialize the default values.

parse() void public This function will be responsible for starting

parsing musicXML file. It will be called via

filename.

parse() void public This function will be responsible for starting

parsing musicXML file. It overrides parse

function with no parameters.

parsePart() void public This function will be responsible for parsing

one part. It can be called via three parameters

which are, entire part of the music and an array

of XMLpart classes that contains instrument

information of the part

parsePartHeader() void public This function is responsible for parsing an

element in the part- list. It can be called with an

element and an array of XMLpart classes

which contains partlist elements

parseNote() void public This function is responsible for parsing

MusicXML note Element. It can be called with

the note Element . Finally it creates Note object

and after storing all information in it, pushes it

to Note array for later step.

 MusicBox SRS 1.0
 Nov 30, 2014

27

createMusicFile() File public This function is responsible for creating a new

file for Arduino.

4.1.1.5 MotorController Class

 This class will be defined in the hardware part of the project. It contains a variable which

name is motorPinNo. Moreover, this class provides to control servo motors and solenoids.

Diagram:

Description:

Name Type /

Return

Value Type

Visibility Definition

motorPinNo int public This value detects which motor attaches which

Arduino digital pin. Moreover, this value is essential

to match the related note and the motor.

setup() void public This function is responsible to set motors and

solenoids. The motors and solenoids that attach which

digital input can be seen in this function.

loop() void public This function is responsible to run correct motors and

solenoids. Furthermore, the related motors and

solenoids can be stopped in this function.

 MusicBox SRS 1.0
 Nov 30, 2014

28

4.1.1.6 Data Class

 This class will be defined in the hardware part of the project. This class serves as a bridge

between software part and hardware part. It provides a connection between the system and user.

Diagram:

Description:

Name Type / Return

Value Type

Visibility Definition

getConnection() void public This function is responsible for the connection

task between software part and hardware part.

readFile() void public This function is responsible for the reading

data from the file.

sendData() void public This function is responsible for the data

sending to microcontroller which is Arduino

from the file.

4.1.2 Data dictionary

 This project will be formed from two parts which are software and hardware. Therefore

there will be three packages to implement and connect them. As seen in Figure 4 below, the

relationship between packages is;

 Hardware and software part of the project generalizes UserInterface package.

 UserInterface package will be use by the user. It will provide connection between other

packages and the application.

 Developers will be implement hardware and software part separately.

 MusicBox SRS 1.0
 Nov 30, 2014

29

Figure 4: UserInterface Package Diagram

The relationship between classes which are inside the software package is:

 XMLPart class extends java Object class and it is used by MusicXMLParser. There is a

strong relationship between them since XMLPart class will be implemented as helper

class for MusicXMLParser.

 MusicXMLParser class has elements from VoiceDef and Note classes. It uses these

classes during parsing. Relationship is weak since other classes have information about

the score sheet and note.

It can be seen in figure 5 below.

Figure 5: Software Package Diagram

 MusicBox SRS 1.0
 Nov 30, 2014

30

The relationship between classes which are inside hardware package is:

 MotorController class has elements from Data class. This class controls motors via Arduino.

 Data class provides connection between file and the Arduino.

Figure 6: Hardware Package Diagram

5. Behavioral Model and Description

 In this part of this document, how the transitions states are set up and task of these states

will be explained.

5.1 Description for Software Behavior

 To use the system, our product whose name is MusicBox, a computer which can be

upload notes and a musical instruments which is specified as organ. There are 7 states of the

system.

 Initial State: This state is reached by providing the product.

 Connection State: This state is reached from initial state when the user connects the

product and the organ. Furthermore, the user must connect the product and computer and the

product had to be connected with power unit. From this state, system can reach the Picture State,

musicXML State and Note State. Moreover, from this state, system can reach the final state. In

addition, if the user stops the music, system returns the Connection State.

 Picture State: This state is reached from connection state when the user uploads or

captures the picture. The picture must have some requirements. These requirements are specified

 MusicBox SRS 1.0
 Nov 30, 2014

31

in the assumptions and dependencies. If the picture satisfies these conditions, the system can

reach musicXML State automatically.

 MusicXML State: This state is reached from picture state when the user correct picture

for the program. Moreover, this state is reached from the connection state when the user uploads

musicXML directly. From this state, system can reach the Note State.

 Note State: This state is reached from musicXML state when the user reads notes from

musicXML. Furthermore, if the user uploads .mip file, the user can directly reach Note State

from Connection State. From this state, system can reach “.mip file” State.

 .mip file State: This state is reached from note state when the user plays the selected

music. This music file's extension is “.mip”. From this state, system can return Connection State.

 Final State: This state is reached from connection state when the user disconnects the

product. If the user stops the music or connects the product, system can be disconnected.

5.2 State Transition Diagrams

 State transition diagram which states that which operations and conditions changes the

state of the system can be shown in below Figure 7.

Figure 7: State Transition Diagram

 MusicBox SRS 1.0
 Nov 30, 2014

32

6. Planning

6.1 Team Structure

 Selim Temizer - Advisor

Serdar Çiftçi – Advisor

 Duygu Abadan - Researcher, Developer, Hardware Designer

 Anıl Arpacı - Researcher, Developer, Software Designer

 Yağmur Ertaş - Researcher, Developer, Software Designer

 Baler İlhan - Researcher, Developer, Hardware Designer

6.2 Estimation

Figure 8: Gantt Chart

 MusicBox SRS 1.0
 Nov 30, 2014

33

6.3 Process Model

 The project will be follow agile development model as shown in Figure xxx. Firstly, the

research is made related about similar projects and methodologies. After the researching, the next

step is planning the project and design. Then, implementation will come. After completing the

implementation, the project’s hardware part and software implementation part are combined.

During the implementation and after, the project will be tested once two weeks or three weeks

periodically.

Figure 9: Agile Method Development

7. Conclusion

 This Software Requirement Specification document is prepared to give requirement

details of the project “Building Musical Instrument Playing Systems”. Firstly, general

information and definitions of the project are given. Then, all the functional, non-functional and

interfaces requirements are specified detailed. Moreover, data models and behavioral models are

shown in the document. Finally, planning and development stages of the product are given. This

document will be helpful a basis for design and development of the project to be developed.

 MusicBox SRS 1.0
 Nov 30, 2014

34

8. Supporting information

8.1 Index

 No index is available.

8.2 Appendices

 No appendix is available.

