

OYUN DİYARI

SOFTWARE DESIGN DESCRIPTION

CEMAL AKER

OĞUL CAN ERYÜKSEL

OĞUZHAN TAŞTAN

ANIL GENÇ

Preface

This document contains the system design information about Oyun Diyarı.

“IEEE Standard for Information Technology System Design – Software Design Descriptions –

IEEE STD 1016 – 2009” is referenced for preparation of this document.

This Software Design Documentation provides a complete description of all the system

design and views of the project. The first section of this document includes project

identification, audience identification and stakeholders’ identification. The following sections

include design viewpoints of the system.

VisionImpossible Oyun Diyarı

Table of Contents
1 Introduction ... 1

1.1 Scope ... 1

1.2 Purpose .. 1

1.3 Intended Audience .. 1

1.4 Design Stakeholders and Concerns ... 1

1.5 Design Elements and Relationships ... 1

1.6 Design Rationale .. 1

1.7 Design Language and Tools ... 2

1.8 Definitions, Acronyms, and Abbreviations .. 2

1.9 Overview .. 3

2 References ... 3

3 Design Viewpoints ... 3

3.1 Context Viewpoint ... 3

3.1.1 Use Cases ... 4

3.2 Composition Viewpoint ... 23

3.3 Logical Viewpoint .. 24

3.3.1 Detailed Descriptions of the Classes ... 25

3.3.2 GameObjectManager Class ... 26

3.3.3 GameObject Class .. 27

3.3.4 Player Class .. 27

3.3.5 Pet Class ... 28

3.3.6 DatabaseManager Class .. 28

3.3.7 PCProcessor Class .. 29

3.3.8 Skeleton Class .. 29

3.3.9 OyunDiyari Class .. 29

3.3.10 Sensor Class ... 30

3.4 Dependency Viewpoint ... 30

3.5 Information Viewpoint .. 30

3.6 Patterns Viewpoint .. 32

3.7 Interface Viewpoint ... 33

3.7.1 Overview of User Interface ... 33

3.7.2 Screen Images .. 33

3.7.3 Screen Objects and Actions ... 36

VisionImpossible Oyun Diyarı

3.8 Structure Viewpoint .. 37

3.9 Interaction Viewpoint .. 37

3.9.1 Gesture Recognition Interaction ... 37

3.9.2 Interactions between the System and the Actor Parent ... 38

3.9.3 Interactions between the Actor Player and the System while Starting a Level 40

3.9.4 Interactions between the Actor Player and the System while Playing a Level 41

3.10 State Dynamics Viewpoint ... 43

4 Appendices .. 44

4.1 Table of Figures ... 44

4.2 Table of Tables ... 45

VisionImpossible Oyun Diyarı

1

1 Introduction
This document is Software Design Description document of Oyun Diyarı. Brief overview about

SDD document of Oyun Diyarı is provided in this section. Since, it is intended to be a clarification and

a guide for the reader. Purpose and scope of the document, definitions and overview of the

document are explained in this section.

1.1 Scope
In this document, the detailed structure of the components of Oyun Diyarı is described along

with the precise implementation details required to satisfy the requirements which have been

specified in the SRS document. It is assumed that the reader has read the SRS document of Oyun

Diyarı, since that document also defines the implementation details of the desired behavior given as

requirements within it. The document shows the design views using the several diagrams in order to

guide the developers and test engineers with an understanding of the overall system architecture

and design.

1.2 Purpose
This document aims to describe the whole architecture of Oyun Diyarı from several perspectives

by using 10 design viewpoints which are context, composition, logical, dependency, information,

patterns, interface, structure, interaction, and state dynamics viewpoints. All relationships of

modules and interfaces of Oyun Diyarı are also main concerns of this document.

1.3 Intended Audience
All developers who will build Oyun Diyarı and test it are the intended audience of the SDD

document. Moreover teaching assistants, faculty members of METU CENG Department and any

other users, who interested in this project, also include target audience of the SDD document.

1.4 Design Stakeholders and Concerns
The members of the design team and development team, which are the group members of

VisionImpossible team, are the design stakeholders of the system. Our main concerns are very high

usability of the user interface, code reusability and quality. Hence, throughout the design stage they

are extensively considered. Each of the models provided in the following sections are based on these

concerns.

1.5 Design Elements and Relationships
With the help of related diagrams in each design viewpoint, following sections describes the

corresponding design elements and their relationships. They are also explained in detail with the

help of description tables.

1.6 Design Rationale
In the OyunDiyari system, the programming language that used is C++. In one hand, since C++ is

an object oriented language, it is possible and easy to implement the design and architectural

patterns. On the other hand, many computer vision and point cloud libraries supports C++ like

OpenCV and Point Cloud Library(PCL) and C++ runs on any platform, not only Windows.

VisionImpossible Oyun Diyarı

2

The main architecture pattern of the system is EDA. EDA has three main advantages for our

system. The first advantage of it is that it supports business demand for better services, since there is

no batching and it provides less waiting. In EDA, there is also no point-to-point integration. It is based

on fire-and-forget idea. In each layer of the EDA, the event is pushed to the next layer, thereafter

there is no link with the layer and the event. Therefore, it is easy to add one more event engine or

event generator and thanks to this the architecture become scalable. The last advantage of EDA is

that its components are loosely coupled which means that each of its components has, or makes use

of, little or no knowledge of the definitions of other separate components . This makes the system

more agile because a change in one component does not affect the others.

One of the design patterns used in the system is producer-consumer design pattern. One

advantage of this pattern is that it is simple to understand and implement. Moreover, the producer

and the consumer parts can be implemented separately and concurrently, they just need to know

shared objects in the shared queue. Therefore, the code is clean, readable and manageable. Another

advantage of it is that producer does not need to know about whom the consumer is and how many

consumers there are. The same is valid for the consumer. Thus, the pattern has high flexibility. Yet

another advantage of it is that the consumer and the producer can work at different speed. By

monitoring the consumers’ speed, another consumer can be introduced for better utilization.

Another design patterns used in the system is singleton pattern. The singletons in the system

prevent other objects from instantiating their own copies of the singleton object, ensuring that all

objects access the single instance. This is exactly what is needed for DatabaseManager Class and

OyunDiyari Class. Since the singleton classes control the instantiation process, the singleton classes

have the flexibility to change the instantiation process. The advantage of singleton pattern over

global variables is that you are absolutely sure of the number of instances and you can change your

mind and manage any number of instances.

1.7 Design Language and Tools
Unified Modeling Language (UML) is used for this document as design language, since it has

good advantages. It breaks the complex system into discrete pieces that can be understood easily by

all intended audiences. Moreover to this, UML is not a system or platform specific.

In Oyun Diyarı, Enterprise Architect, which is built by Sparx System, is used as a design tool. This

Enterprise Architect provides us many advantages such as flexibility, fast operations, extensible. It

can also export our diagrams many XML format or image format.

For the mockup screen images of Oyun Diyarı, the program named as Balsamiq mockups, is

used. It has benefits that thanks to its drag and drop feature, screen images are created very fast;

therefore it saves our time.

1.8 Definitions, Acronyms, and Abbreviations

Term Definition or Abbreviation

CENG Computer Engineering

DBMS Database Management System

ER Diagram Entity-Relationship Diagram

IEEE The Institute of Electrical and Electronics Engineers

Linux An open source operating system

VisionImpossible Oyun Diyarı

3

METU Middle East Technical University

SRS Software Requirement Specification

TCP/IP A communication protocol for the internet and similar networks

UML Unified Modeling Language

Kinect 3D sensor camera that that produced by Microsoft company.

PCL Point Cloud Library

OpengGL Open Graphic Library

SDD Software Design Description

EDA Event Driven Architecture

SDK Software Development Kit

API Application Programming Interface

3D Three Dimensions

1.9 Overview
This document is a software design description for Oyun Diyarı as mentioned in section 1. It is

prepared according to IEEE STD 1016 – 2009. Section 2 includes related references about the

document. The design from different perspectives is described in section 3 by using related diagrams

and tables.

2 References
 IEEE Std 1016 – 2009

 For mockup tool (Balsamiq Mockup)
http://balsamiq.com/products/mockups/

 For all diagrams (Enterprise Architect)
http://www.sparxsystems.com.au/

3 Design Viewpoints
The fundamental purpose of this section describes all viewpoints of Oyun Diyarı in detail. By this

way, this section increases understanding of all stakeholders from all perspectives of Oyun Diyarı.

3.1 Context Viewpoint
The overall context of Oyun Diyarı, which includes all the relationships, interactions and

dependencies between Oyun Diyarı and its environment, is explained in context viewpoint. In other

words, context viewpoint specifies that the interactions between design objects and actor that

include stakeholders and users. Context and use case diagrams with refinements from SRS of Oyun

Diyarı help to show these interactions more clearly.

http://balsamiq.com/products/mockups/
http://www.sparxsystems.com.au/

VisionImpossible Oyun Diyarı

4

Figure 1 – Context Diagram

Figure 1 shows the context diagram for the Oyun Diyarı. This diagram explains the system parts

in an abstract way. User interface of the software is responsible for interacting with the user, 3D

sensor and the database as a bridge. It takes inputs from the user and processes it according to data

which come from 3D sensor. User interface also generates responses to the user and communicate

with the database. The database holds the system data and provides it according to queries made by

user interface of Oyun Diyarı.

3.1.1 Use Cases

This section describes the offered services and the actors of the system with the help of the use

case diagrams and the scenarios related to them.

3.1.1.1 Use Cases for Actor Parent

All the services provided to the actor parent are shown in Figure 2. Following scenarios explain

the use cases.

VisionImpossible Oyun Diyarı

5

Figure 2 – Use Case Diagram for Actor Parent

Use Case ID UC1

Use Case Name Add Player

Description This use case describes the event in which the parent who wants to add a

player.

Actors The parent

Preconditions The parent should be in “Profile Manager Screen”.

Trigger The parent clicks to add player button.

Basic Flow 1. The parent moves cursor by hand movement to add player button.

2. The parent clicks to add player button by grabbing gesture.

3. The add player screen appears on the screen.

4. The parents fill the needed attributes to add a player.

5. The parent moves cursor by hand movement to OK.

VisionImpossible Oyun Diyarı

6

6. The parent clicks to OK by grabbing gesture .

7. The pop up indicating the operation is successful appears

Alternate Flow -

Exception Flow -

Post Conditions The player should be inserted into the database.

Use Case ID UC2

Use Case Name Edit Player

Description This use case describes the event in which the parent who wants to edit a

player.

Actors The parent

Preconditions The parent should be in “Profile Manager Screen”.

Trigger The parent clicks to edit player button.

Basic Flow 1. The parent moves cursor by hand movement to edit player button.

2. The parent clicks to edit player button by grabbing gesture.

3. The edit player screen appears on the screen.

4. The parents fill the needed attributes to edit a player.

5. The parent moves cursor by hand movement to OK.

6. The parent clicks to OK by grabbing gesture.

7. The pop up indicating the operation is successful appears

Alternate Flow -

Exception Flow -

Post Conditions The player in the database should be updated.

Use Case ID UC3

Use Case Name Delete Player

Description This use case describes the event in which the parent who wants to delete a

VisionImpossible Oyun Diyarı

7

player.

Actors The parent

Preconditions The parent should be in “Profile Manager Screen”.

Trigger The parent clicks to delete player button.

Basic Flow 1. The parent moves cursor by hand movement to the player who will be

deleted.

2. The parent clicks to delete player button by grabbing gesture.

3. The pop up indicating the operation is successful appears.

4. A dialog box for confirming the operation pops up.

5. The player clicks on the “OK” button.

6. The player is deleted.

Alternate Flow -

Exception Flow 3. The player clicks on the “No” button.

4. The player is not deleted.

Post Conditions The player should be deleted from the database.

Use Case ID UC4

Use Case Name Read Report

Description This use case describes the event in which the parent who wants to read the

report.

Actors The parent

Preconditions The parent should be in “Profile Manager Screen”.

Trigger The parent clicks to read report button.

Basic Flow 1. The parent moves cursor by hand movement to read report button.

2. The parent clicks to read report button by grabbing gesture.

3. The report appears on the screen.

Alternate Flow -

VisionImpossible Oyun Diyarı

8

Exception Flow -

Post Conditions The report should appear on the screen.

3.1.1.2 Use Cases for Actor Player

All the services provided to the actor player are shown in Figure 3. Following scenarios explain

the use cases. The scenario for the “Play Level” use case is excluded since it is explained in the

following section.

Figure 3 – Use Case Diagram for Actor Player

VisionImpossible Oyun Diyarı

9

Use Case ID UC5

Use Case Name Go to Main Menu

Description This use case describes the event in which the player who wants to return

back to the main menu.

Actors The player who wants to go back to main menu.

Preconditions The player should be in “Profile Manager Screen” or “Map Screen”.

Trigger Player clicks the “Go to Main Menu”.

Basic Flow 1. The player moves the cursor by hand movement to the “Go To Main

Menu”.

2. Player clicks the “Go to Main Menu” by grabbing gesture.

3. The player is directed to the Main Menu.

Alternate Flow -

Exception Flow -

Post Conditions The player should be in Main Menu.

Use Case ID UC6

Use Case Name Go to Map

Description This use case describes the event in which the player who wants to return

back to “Map Screen”.

Actors The player who wants to go back to “Map Screen”.

Preconditions The player should be playing a level.

Trigger Player clicks the “Go to Map”.

Basic Flow 1. The player moves the cursor by hand movement to the “Go to Map”

2. Player clicks the “Go to Map” by grabbing gesture.

3. A dialog box for confirming the operation pops up.

4. The player clicks on the “OK” button.

5. The player is directed to the “Map Screen”.

Alternate Flow

VisionImpossible Oyun Diyarı

10

Exception Flow 3. The player clicks on the “No” button.

4. Game is going on.

Post Conditions The player should be in “Map Screen”.

Use Case ID UC7

Use Case Name Move Cursor

Description This use case describes the event in which the player who wants to move

cursor.

Actors The player

Preconditions -

Trigger The player shows his/her palm to the camera.

Basic Flow 1. The player moves his/her hand in any direction.

2. The cursor moves in the direction which is the same as the player's.

Alternate Flow -

Exception Flow -

Post Conditions The cursor must be at the correct position according to its movement.

Use Case ID UC8

Use Case Name Pause Game

Description This use case describes the event in which the player who wants to pause the

game

Actors The player

Preconditions The player should be playing a level.

Trigger The player clicks the pause button.

Basic Flow 1. The player moves the cursor by hand movement to the pause button.

2. The player clicks the pause button by grabbing gesture.

3. The game pauses and pause menu is displayed.

VisionImpossible Oyun Diyarı

11

Alternate Flow -

Exception Flow -

Post Conditions The game should be paused.

Use Case ID UC9

Use Case Name Quit Game

Description This use case describes the event in which the player who wants to quit the

game.

Actors The player

Preconditions The player should be in “Profile Manager Screen” or “Map Screen” or “Main

Menu”.

Trigger The player clicks the quit button.

Basic Flow 1. The player moves the cursor by hand movement to the quit button.

2. The player clicks the quit button.

3. A dialog box for confirming the operation pops up.

4. The player clicks on the “OK” button.

5. The game is shut down.

Alternate Flow -

Exception Flow 3. The player clicks on the “No” button.

4. The player stays in the current screen.

Post Conditions -

Use Case ID UC10

Use Case Name Restart Level

Description This use case describes the event in which the player who wants to restart the

level currently played.

Actors The player

Preconditions The player should be playing a level.

VisionImpossible Oyun Diyarı

12

Trigger The player clicks the pause button.

Basic Flow 1. The player moves the cursor by hand movement to the pause button.

2. The player clicks the pause button by grabbing gesture.

3. The player clicks the restart level button in the pause menu.

4. A dialog box for confirming the operation pops up.

5. The player clicks on the “OK” button.

6. The level is restarted.

Alternate Flow -

Exception Flow 3. The player clicks on the “No” button.

4. Game is going on.

Post Conditions The level should be restated.

Use Case ID UC11

Use Case Name Resume Game

Description This use case describes the event in which the player who wants to resume

the paused game.

Actors The player

Preconditions The player should be paused the game.

Trigger The player clicks resume button.

Basic Flow 1. The player moves the cursor to resume button by hand movement.

2. The player clicks resume button by grabbing gesture.

3. The paused game is started from where it stays.

Alternate Flow -

Exception Flow -

Post Conditions The player continues the level where it stays.

VisionImpossible Oyun Diyarı

13

Use Case ID UC12

Use Case Name Select Level

Description This use case describes the event in which the player who wants to play a

level.

Actors The player

Preconditions The player should be in Map Screen.

Trigger The player clicks to a level.

Basic Flow 1. The player moves cursor by hand movement to the level which s/he wants

to play.

2. The player clicks to the level by grabbing gesture.

3. The corresponding level starts.

Alternate Flow -

Exception Flow -

Post Conditions The player should be playing the level s/he has chosen.

VisionImpossible Oyun Diyarı

14

3.1.1.4 Use Cases Extending Play Level Use Case for Actor Player

All the use cases extending “Play Level” use case for the actor player are shown in Figure 4.

Following scenarios explain the use cases.

Figure 4 – Use Case Diagram for the Use Cases Extending the Play Level Use Case for Actor Player

VisionImpossible Oyun Diyarı

15

Use Case ID UC13

Use Case Name Fruit Picking

Description This use case describes the event in which the player plays a level which is
designed as a Fruit Picking game.

Actors Player who wants to play a level which is a Fruit Picking game.

Preconditions Player should load his or her profile.

Trigger Player chooses the level using corresponding button in the Map Screen.

Basic Flow 1. Player opens the Map Screen.
2. Player pushes the button corresponding to the level.
3. The level starts.
4. A tree and fruits on it appear on the screen.
5. Player plays the level by picking fruits.

Alternate Flow -

Exception Flow -

Post Conditions Player should be able to play the level by picking fruits.

Use Case ID UC14

Use Case Name Pick Fruit

Description This use case describes the event in which the player picks a fruit from the
tree in Fruit Picking game.

Actors Player who wants to pick a fruit in Fruit Picking game.

Preconditions Player should be playing a level which is a Fruit Picking game.

Trigger Player moves cursor.

Basic Flow 1. Player starts a level which is a Fruit Picking game.
2. Player moves the cursor on a fruit by hand motion.
3. The fruit is placed into a basket.

Alternate Flow -

Exception Flow -

Post Conditions The fruit disappears on the tree.

Use Case ID UC15

Use Case Name Connecting the Dots

Description This use case describes the event in which the player plays a level which is
designed as a Connecting the Dots game.

Actors Player who wants to play a level which is a Connecting the Dots game.

Preconditions Player should load his or her profile.

Trigger Player chooses the level using corresponding button in the Map Screen.

Basic Flow 1. Player opens the Map Screen.
2. Player pushes the button corresponding to the level.
3. The level starts.
4. Dots on the circumference of a shape appear on the screen.
5. Player plays the level by selecting the next dot each time until the shape is

completed.

Alternate Flow -

Exception Flow -

Post Conditions Player should be able to play the level by selecting dots.

VisionImpossible Oyun Diyarı

16

Use Case ID UC16

Use Case Name Select Dot

Description This use case describes the event in which the player selects the next dot to
complete the shape in Connecting the Dots game.

Actors Player who wants to select the next dot in Connecting the Dots game.

Preconditions Player should be playing a level which is a Connecting the Dots game.

Trigger Player moves cursor.

Basic Flow 1. Player starts a level which is a Connecting the Dots game.
2. Player moves the cursor on a dot.
3. Player makes a grabbing gesture to select the dot.
4. The dot is joined by a straight line to the previous one.

Alternate Flow -

Exception Flow 4. The dot is not joined to the previous one if it is not the correct dot.

Post Conditions A line between the previous and the newly chosen dots should appear.

Use Case ID UC17

Use Case Name Dancing

Description This use case describes the event in which the player plays a level which is
designed as a Dancing game.

Actors Player who wants to play a level which is a Dancing game.

Preconditions Player should load his or her profile.

Trigger Player chooses the level using corresponding button in the Map Screen.

Basic Flow 1. Player opens the Map Screen.
2. Player pushes the button corresponding to the level.
3. The level starts.
4. Player chooses the music s/he wants.
5. Requested move appears on the screen.
6. Player makes the move.
7. Go to 5

Alternate Flow 5. Player dances freely.

Exception Flow -

Post Conditions -

Use Case ID UC18

Use Case Name Choose Music

Description This use case describes the event in which the player chooses the music that
will be played in Dancing game.

Actors Player who wants to choose the music in Dancing game.

Preconditions Player should be playing a level which is a Dancing game.

Trigger The level starts.

Basic Flow 1. Player starts a level which is a Dancing game.
2. A popup menu appears.
3. Player chooses one of the provided music files by pushing the

corresponding button.
4. The popup menu disappears.

Alternate Flow -

Exception Flow -

Post Conditions The music that is chosen should be played.

VisionImpossible Oyun Diyarı

17

Use Case ID UC19

Use Case Name Card Matching

Description This use case describes the event in which the player plays a level which is
designed as a Card Matching game.

Actors Player who wants to play a level which is a Card Matching game.

Preconditions Player should load his or her profile.

Trigger Player chooses the level using corresponding button in the Map Screen.

Basic Flow 1. Player opens the Map Screen.
2. Player pushes the button corresponding to the level.
3. The level starts.
4. Cards each of which has a pair appear on the screen faced up.
5. Cards are flipped face down.
6. Player flips a card face up.
7. Player flips the pair of that card face up.

Alternate Flow 7. Player flips a card other than the pair face up.
8. Both cards are flipped face down.

Exception Flow -

Post Conditions Player should be able to play the level by selecting dots.

Use Case ID UC20

Use Case Name Flip a Card

Description This use case describes the event in which the player flips a card face up in
Card Matching game.

Actors Player who wants to flip a card in Card Matching game.

Preconditions Player should be playing a level which is a Card Matching game.

Trigger The level starts.

Basic Flow 1. Player starts a level which is a Card Matching game.
2. Player moves the cursor on a card.
3. Player makes a grabbing gesture.
4. The card flips face up.

Alternate Flow -

Exception Flow -

Post Conditions The card should appear faced up.

Use Case ID UC21

Use Case Name Balloon Popping

Description This use case describes the event in which the player plays a level which is
designed as a Balloon Popping game.

Actors Player who wants to play a level which is a Balloon Popping game.

Preconditions Player should load his or her profile.

Trigger Player chooses the level using corresponding button in the Map Screen.

Basic Flow 1. Player opens the Map Screen.
2. Player pushes the button corresponding to the level.
3. The level starts.
4. Balloons moving around appear on the screen.
5. Player hits a balloon.
6. The balloon pops and disappears.

Alternate Flow -

Exception Flow -

VisionImpossible Oyun Diyarı

18

Post Conditions The balloon that is hit should disappear.

Use Case ID UC22

Use Case Name Hit a Balloon

Description This use case describes the event in which the player hits a balloon in Balloon
Popping game.

Actors Player who wants to pop a balloon in Balloon Popping game.

Preconditions Player should be playing a level which is a Balloon Popping game.

Trigger The level starts.

Basic Flow 1. Player starts a level which is a Balloon Popping game.
2. Player moves the cursor on a balloon.
3. Player makes a gesture to hit.
4. The balloon pops and disappears.

Alternate Flow -

Exception Flow 2. Player moves the cursor on an empty area.
3. Player makes a gesture to hit.
4. The gesture is ignored.

Post Conditions

Use Case ID UC23

Use Case Name Counting Animals

Description This use case describes the event in which the player plays a level which is
designed as a Counting Animals game.

Actors Player who wants to play a level which is a Counting Animals game.

Preconditions Player should load his or her profile.

Trigger Player chooses the level using corresponding button in the Map Screen.

Basic Flow 1. Player opens the Map Screen.
2. Player pushes the button corresponding to the level.
3. The level starts.
4. Animals behind a fence appear on the screen.
5. Player grabs an animal.
6. Player moves the animal.
7. Player Releases the animal.
8. Go to 5.

Alternate Flow -

Exception Flow -

Post Conditions

Use Case ID UC24

Use Case Name Grab Animal

Description This use case describes the event in which the player grabs an animal in
Counting Animals game.

Actors Player who wants to grab an animal in Counting Animals game.

Preconditions Player should be playing a level which is a Counting Animals game.

Trigger The level starts.

Basic Flow 1. Player starts a level which is a Counting Animals game.
2. Player moves the cursor on an animal.
3. Player makes a grabbing gesture.

VisionImpossible Oyun Diyarı

19

4. The animal is attached to the cursor.

Alternate Flow -

Exception Flow 2. Player moves the cursor on an empty area.
3. Player makes a grabbing gesture.
4. The gesture is ignored.

Post Conditions The animal should be attached to the cursor to move together.

Use Case ID UC25

Use Case Name Move Animal

Description This use case describes the event in which the player moves an animal in
Counting Animals game.

Actors Player who wants to move an animal in Counting Animals game.

Preconditions Player should be playing a level which is a Counting Animals game.

Trigger Player grabs an animal.

Basic Flow 1. Player starts a level which is a Counting Animals game.
2. Player grabs an animal.
3. Player moves the cursor using hand motion.
4. The animal moves together with the cursor.

Alternate Flow -

Exception Flow -

Post Conditions The animal should be positioned with the same position as the cursor.

Use Case ID UC26

Use Case Name Release Animal

Description This use case describes the event in which the player releases an animal in
Counting Animals game.

Actors Player who wants to release an animal in Counting Animals game.

Preconditions Player should be playing a level which is a Counting Animals game.

Trigger Player moves an animal.

Basic Flow 1. Player starts a level which is a Counting Animals game.
2. Player grabs an animal.
3. Player moves an animal.
4. Player opens his/her hand to release the animal.
5. The animal is detached from the cursor.

Alternate Flow -

Exception Flow -

Post Conditions The animal should stay still where it is released.

Use Case ID UC27

Use Case Name Puzzle

Description This use case describes the event in which the player plays a level which is
designed as a Puzzle game.

Actors Player who wants to play a level which is a Puzzle game.

Preconditions Player should load his or her profile.

Trigger Player chooses the level using corresponding button in the Map Screen.

Basic Flow 1. Player opens the Map Screen.
2. Player pushes the button corresponding to the level.
3. The level starts.

VisionImpossible Oyun Diyarı

20

4. Randomly positioned puzzle parts appear on the screen.
5. Player grabs a part.
6. Player moves the part.
7. Player Releases the part.
8. Go to 5.

Alternate Flow -

Exception Flow -

Post Conditions

Use Case ID UC28

Use Case Name Grab a Part

Description This use case describes the event in which the player grabs a part in Puzzle
game.

Actors Player who wants to grab a part in Puzzle game.

Preconditions Player should be playing a level which is a Puzzle game.

Trigger The level starts.

Basic Flow 1. Player starts a level which is a Puzzle game.
2. Player moves the cursor on a part.
3. Player makes a grabbing gesture.
4. The part is attached to the cursor.

Alternate Flow -

Exception Flow 2. Player moves the cursor on an empty area.
3. Player makes a grabbing gesture.
4. The gesture is ignored.

Post Conditions The part should be attached to the cursor to move together.

Use Case ID UC29

Use Case Name Move a Part

Description This use case describes the event in which the player moves a part in Puzzle
game.

Actors Player who wants to move a part in Puzzle game.

Preconditions Player should be playing a level which is a Puzzle game.

Trigger Player grabs a part.

Basic Flow 1. Player starts a level which is a Puzzle game.
2. Player grabs a part.
3. Player moves the cursor using hand motion.
4. The part moves together with the cursor.

Alternate Flow -

Exception Flow -

Post Conditions The part should be positioned with the same position as the cursor.

Use Case ID UC30

Use Case Name Release a Part

Description This use case describes the event in which the player releases a part in Puzzle
game.

Actors Player who wants to release a part in Puzzle game.

Preconditions Player should be playing a level which is a Puzzle game.

Trigger Player moves a part.

Basic Flow 1. Player starts a level which is a Puzzle game.

VisionImpossible Oyun Diyarı

21

2. Player grabs a part.
3. Player moves a part.
4. Player opens his/her hand to release the part.
5. The part is detached from the cursor.

Alternate Flow -

Exception Flow -

Post Conditions The part should stay still where it is released.

Use Case ID UC31

Use Case Name Pet Caring

Description This use case describes the event in which the player plays a level which is

designed as a Per Caring game.

Actors Player who wants to play a level which is a Pet Caring game.

Preconditions Player should load his or her profile.

Trigger Player chooses the level using corresponding button in the Map Screen.

Basic Flow 1. Player opens the Map Screen.

2. Player pushes the button corresponding to the level.

3. The level starts.

4. The pet appear on the screen.

5. Player cares the pet by giving water, medicine, food or cleaning.

Alternate Flow -

Exception Flow -

Post Conditions Player should be able to play the level by caring the pet.

Use Case ID UC32

Use Case Name Give Medicine

Description This use case describes the event in which the player gives medicine to the

pet in Pet Caring game.

Actors Player who wants to give medicine to the pet in Pet Caring game.

Preconditions Player should be playing a level which is a Pet Caring game.

Trigger Player moves cursor.

Basic Flow 1. Player starts a level which is a Pet Caring game.

2. Player moves the cursor on the medicine picture by hand motion.

VisionImpossible Oyun Diyarı

22

3. Player clicks the medicine picture by grabbing gesture.

4. The pet gets medicine.

Alternate Flow -

Exception Flow -

Post Conditions The pet gets medicine and increase its health.

Use Case ID UC33

Use Case Name Feed

Description This use case describes the event in which the player feed the pet in Pet

Caring game.

Actors Player who wants to feed the pet in Pet Caring game.

Preconditions Player should be playing a level which is a Pet Caring game.

Trigger Player moves cursor.

Basic Flow 1. Player starts a level which is a Pet Caring game.

2. Player moves the cursor on the food picture by hand motion.

3. Player clicks the food picture by grabbing gesture.

4. The pet eats food.

Alternate Flow -

Exception Flow -

Post Conditions The pet eats food and decrease its hunger.

Use Case ID UC34

Use Case Name Give Water

Description This use case describes the event in which the player give water to the pet in

Pet Caring game.

Actors Player who wants to give water to the pet in Pet Caring game.

Preconditions Player should be playing a level which is a Pet Caring game.

Trigger Player moves cursor.

VisionImpossible Oyun Diyarı

23

Basic Flow 1. Player starts a level which is a Pet Caring game.

2. Player moves the cursor on the water picture by hand motion.

3. Player clicks the water picture by grabbing gesture.

4. The pet drinks water.

Alternate Flow -

Exception Flow -

Post Conditions The pet drinks water and decrease its thirst.

Use Case ID UC35

Use Case Name Clean

Description This use case describes the event in which the player clean the pet in Pet

Caring game.

Actors Player who wants to clean the pet in Pet Caring game.

Preconditions Player should be playing a level which is a Pet Caring game.

Trigger Player moves cursor.

Basic Flow 1. Player starts a level which is a Pet Caring game.

2. Player moves the cursor on the brush picture by hand motion.

3. Player clicks the brush picture by grabbing gesture.

4. The pet is cleaned.

Alternate Flow -

Exception Flow -

Post Conditions The pet is clean and decrease its dirt.

3.2 Composition Viewpoint
Relationships between each component of Oyun Diyarı are described in component viewpoint

by using component and deployment diagrams. This viewpoint helps the reusing of components and

estimating costs for staffing and scheduling of Oyun Diyarı, while managing and creating it. Figure 5

shows the component diagram of the system. The following table explains the components in detail.

Figure 6 is the deployment diagram for the system.

VisionImpossible Oyun Diyarı

24

Figure 5 – Component Diagram

Figure 6 – Deployment Diagram

3.3 Logical Viewpoint
All entities of Oyun Diyarı and their detailed implementations as classes are described in logical

viewpoint by using class diagram with refinements from SRS of Oyun Diyarı. Logical viewpoint is also

explains static structure of Oyun Diyarı’s entities. Except for these main concerns, logical viewpoint

VisionImpossible Oyun Diyarı

25

also mentions that the resulting reuse practices and the design pattern adaptations. Figure 7 shows

the class diagram describing the objects of the system.

Figure 7 – Class Diagram

3.3.1 Detailed Descriptions of the Classes

3.3.1.1 Level Class

This class is responsible creating every level in the game. These levels can include many different

games, fruit picking, connecting dots, puzzle etc. Every game type will inherit from level class. After,

it overloads initializeScene() and updateScene() function. Table 1 describes the level class.

VisionImpossible Oyun Diyarı

26

Method Signature Return Type Description

initializeScene() void Creates the game scene with required
objects for related game.

updateScene() void Updates the whole objects in the scene
according to required modifications.

resume() void Allows the user to resume the game
after the player paused the game.

pause() void Pauses the game until player wants to
resume again

restart() void Restarts current the level.

exit() void Exits from the level and returns to the
game map.

quit() void Quits from the whole game. Terminates
the program.

Table 1 – Description of the Level Class

3.3.2 GameObjectManager Class

This class is responsible for managing the objects on the scene. It has a name, gameObject map

structure. To find objects with given name fast and efficiently. Table 2 describes the

GameObjectManager class.

Method Signature Return Type Description

add(String name,
GameObject obj)

void Adds given object with its name to the
map structure of the
GameObjectManager

remove(String name) void Removes the object that has given name
from the map structure.

remove(float x, float y) void Search in the map structure and
removes the object that has given
position.

getObject(String name) GameObject Returns the game object with given
name.

drawAll() void Draws all objects to scene.

updateAll() void Updates all objects in the manager with
required specification.

VisionImpossible Oyun Diyarı

27

removeAll() void Clears all objects in the manager.

Table 2 – Description of the GameObjectManager Class

3.3.3 GameObject Class

All objects in the game will be inherited from this class. For example, if you want to create a

mountain you shall inherit from this class. Then, loadModel() function need to be overloaded with

related model. Table 3 describes the GameObject class.

Method Signature Return Type Description

transform(String type, float
x, float y, float z, float
angle)

void Applies a transformation operation, like
scaling, rotation etc., to the object with
given parameters.

loadModel() void Loads related model to the GameObject.

getPosition() float[] Returns the position of the object.

getAngle() float Returns the angle of the object.

isDestroyable() Bool Returns true if object needs to be
destroyed, else return false.

setPosition(float x, float y,
float z)

void Sets the position of the object with given
parameters.

setAngle(float angle) void Sets the angle of the object with given
parameter.

setDestroyable(Bool isDest) void Sets ‘destroyable’ variable of the object
with given parameter.

Table 3 – Descriptions of the Game Object Class

3.3.4 Player Class

This class keeps all the information about a player. Table 4 describes the Player class.

Method Signature Return Type Description

getScore() int Returns the current score of the player.

getPet() Pet Returns the pet information of the
player.

VisionImpossible Oyun Diyarı

28

getInfo() String[] Returns all information about player.

setInfo(String[] info) void Sets the information of player with
given parameters.

Table 4 – Description of the Player Class

3.3.5 Pet Class

This class keeps information about the player’s pet. Table 5 describes the Pet class.

Method Signature Return Type Description

clean(int amount) void Reduces the dirt level of pet.

feed(int amount) void Reduces the food need of the pet.

giveMedicine(int amount) void Increases the health level of the pet.

giveWater(int amount) void Reduces the thirst level of the pet.

getStatus() int[] Returns the all-current status levels of
pet. (hunger, health, emotion, etc.)

getId() int Returns the id of the pet.

getType() int Returns the type of the pet.

setId(int pid) void Sets the id of the pet.

setType(int t) void Sets the type of the pet.

setEmotion(int emo) void Sets the emotion of the pet.

Table 5 – Description of the Pet Class

3.3.6 DatabaseManager Class

This class provides an interface between database and the game. Table 6 describes the

DatabaseManager class.

VisionImpossible Oyun Diyarı

29

Method Signature Return Type Description

saveUserData(Player p) void Updates given the player info from the
database.

loadUserData(int pid) Player Returns the pet information of the
player.

addPlayer(Player p) void Adds the given player to the database.

deletePlayer(int pid) void Deletes the player from the database.

Table 6 – Description of the DatabaseManager Class

3.3.7 PCProcessor Class

PCProcessor is the class that is responsible for finding the skeleton from the point cloud by using

classification algorithms. Table 7 describes the PCProcessor Class.

Method Signature Return Type Description

extractFeatures() float[] Extracts the current features of the point
cloud.

classify(Skeleton skel) void Classifies the parts of the skeleton by
using extracted features and writes the
result to to given skeleton parameter.

getSkeleton(p) Skeleton Returns the classified skeleton.

getGesture(int pid) Gesture Recognize the gesture from the classified
skeleton and returns it.

Table 7 – Description of the PCProcessor Class

3.3.8 Skeleton Class

Skeleton is the class which stores the joints of the skeleton found in the point cloud. This class is

a singleton class. Table 8 describes the Skeleton class.

Method Signature Return Type Description

setJoints(Joint[] joints) void Sets the joints according to the given
vector of joints

getJoints() Joint[] Returns the current vector of joints.

Table 8 – Description of the Skeleton Class

3.3.9 OyunDiyari Class

This class is responsible for displaying the games’ user interface and handles the interactions

between player and the game. Table 9 describes the OyunDiyari Class.

VisionImpossible Oyun Diyarı

30

Method Signature Return Type Description

showMainMenu() void Shows the main menu of the game

showMap() void Display to the map of the game so that
the player can selects a level

showSplashScreen() void Displays the splash screen of the game.

startLevel(Level levc) void Constructs and displays the selected
level and also handles the interactions

quit() void Allows the player to quit the game.

Table 9 – Description of the OyunDiyari Class

3.3.10 Sensor Class

This class is an abstract class. Every camera that we used must be inherit from this class and

define its functions. Table 10 describes the Sensor class.

Method Signature Return Type Description

initialize() void Initializes the camera sensor by using
camera API.

getPointCloud() float[] Returns the point cloud that comes from
camera.

Table 10 – Description of the Sensor Class

3.4 Dependency Viewpoint
Interconnections and interfaces between Oyun Diyarı entities are explained in dependency

viewpoint. The parameterizations of interfaces between entities are found in the component

diagram of the system in Figure 5. Since the order of executions will be explained in Section 3.9,

which is interaction viewpoint, this section does not mention the order of executions.

3.5 Information Viewpoint
Information viewpoint describes the data of the system in the database tables by using ER

diagram with refinements from SRS of Oyun Diyarı. This viewpoint also contains management and

manipulation information of database structure of Oyun Diyarı. Figure 8 shows the entity relationship

diagram of Oyun Diyarı. Under the figure, each entity is described in terms of its fields and their

descriptions see Table 11 and Table 12.

VisionImpossible Oyun Diyarı

31

Figure 8 – Entity Relationship Diagram

Entity Description Relations

Player Holds the players’ data that
added the system as player.

Each player can have more than one level.
However each player must have exactly
one pet.

Level Holds all information of game
levels about players.

Each level can be had by more than one
player.

Pet Holds all information of pet
that is hold by a player.

Each pet must had by exactly one player.
In other words, pets do not exist without
player.

Table 11 – Entity Descriptions and Relations

Entity Field Name Type Description

Player

id int It is the unique id which each player has its own, and the
primary key of the table.

name varchar It is name of the player.

surname varchar It is surname of the player.

age int It is age of the player.

gender int It is gender of the player.

photo jpg It holds profile photo of the player.

report varchar It holds parental report of the player.

Level

id int It is the unique id which each level has its own, and the
primary key of the table.

kind int It is the kind of the level.

open/locked int It holds the information about the level that can be
played by user or not.

Pet

id int It is the unique id which each pet has its own, and the
primary key of the table.

dirt int It holds dirt level of the pet.

thirst int It holds thirst level of the pet.

hunger int It holds hunger level of the pet.

health int It holds health level of the pet.

VisionImpossible Oyun Diyarı

32

emotion int It holds emotion of the pet
Table 12 – Descriptions of the Fields of the Entities

3.6 Patterns Viewpoint
Design pattern is a general usable solution template to a commonly occurring problem. Design

ideas as collaboration patterns, which involve abstracted roles and connectors, are described in

patterns viewpoint.

A design pattern is a general usable solution template to a commonly occurring problem. In this

viewpoint, design ideas as collaboration patterns, which involve abstracted roles and connectors, are

described. In Oyun Diyarı system, the Event-Driven Architecture (EDA) is used as architectural pattern

and singleton and producer-consumer are used as design patterns.

EDA is an architectural pattern which has four main event flow layers. The first layer is event

generator which is the starting point of the flow. The event generator senses a fact and represents

the fact into an event. In Oyun Diyarı system, the 3D sensor of the camera is the event generator

and the fact is the point cloud.

The second layer is the event channel which is a mechanism whereby the information from an

event generator is transferred to the event engine (will be explained later). The events processed

asynchronously, the events are stored in a queue, waiting to be processed later by the event

processing engine. In Oyun Diyarı system, Sensor Class represents the event channel by obtaining the

point cloud from the 3D sensor and put it into the queue to be processed by the Point Cloud

Processor Class.

The third layer is the event processing engine where the event is identified, and the appropriate

reaction is selected and executed. Our event identification is based on recognition of the skeleton. In

Oyun Diyarı system, Point Cloud Processor Class represents the event processing engine by

processing the point cloud in the queue sequentially.

The last layer is event-driven activity where the consequences of the event are shown. The

event-driven activity is represented by Oyun Diyarı Class in our system by displaying the graphical

user interface and handling the interactions between game and the user.

The Producer – Consumer is a design pattern which is based on the idea of separating work that

needs to be done from the execution of that work. This means that the separation of the work that

needs doing from the execution of that work is achieved by the Producer placing items of work on

the queue for later processing instead of dealing with them the moment they are identified (see

Figure 9). The Consumer is then free to remove the work item from the queue for processing at any

time in the future. This decoupling means that Producers don't care how each item of work will be

processed, how many consumers will be processing it, or how many other producers there are.

VisionImpossible Oyun Diyarı

33

Figure 9 – The producer – Consumer Pattern

In Oyun Diyarı system, the Producer part of the pattern is Point Cloud Processor Class which

produces the singleton by processing the point cloud and the Consumer part of the pattern is Oyun

Diyarı which makes use of the skeleton produced by Point Cloud Processor Class.

The singleton pattern is a design pattern that restricts the instantiation of a class to one object.

This is useful when exactly one object is needed to coordinate actions across the system. The

concept is sometimes generalized to systems that operate more efficiently when only one object

exists, or that restrict the instantiation to a certain number of objects. In OyunDiyari system, there

are two singleton classes: OyunDiyari and DatabaseManager.

3.7 Interface Viewpoint
Interface viewpoint provides detailed explanations for external and internal interfaces of Oyun

Diyarı for designers, programmers and testers. In other words, it is also a base source for users about

how to use interfaces of Oyun Diyarı correctly.

3.7.1 Overview of User Interface

When the player enters Oyun Diyarı, s/he encounters the welcome screen. In this screen, player

can go to main menu, profile manager screen or exit from the game. In main menu screen, player can

go to game map, go back to the welcome screen, can show his/her profile page or can exit from the

game. If player goes to the map screen, s/he can go back to the main menu, can exit from the game

or can select a level that s/he wants to play. On the other hand if the player goes to profile manager

screen, s/he can add a new user, delete an existing user, edit an existing user or read the progress

report of the user. On this page, if the player goes add new user screen, s/he can see some blanks to

fill with new user’s information.

3.7.2 Screen Images

This section provides detailed descriptions of the user interface with the help of screen images.

Although all screens haven’t been created yet, main samples will be provided. The screenshots of this

section are created by using Balsamiq Mockup software up to now. All of the functionalities in this

section user will control a cursor with his/her hands.

3.7.2.1 Welcome Screen

This screen will be showed when the game started. It is our opening page. How it will see is shown in

Figure 10. In the welcome screen player can go to the main menu, can go to the profile manager

screen and can exit from the game.

VisionImpossible Oyun Diyarı

34

Figure 10 - Game Welcome Screen

3.7.2.2 Main Menu Screen

In this screen user can go to game map, go back to the welcome screen, can show his/her profile

page and can exit from the game. This screen can be seen in Figure 11.

Figure 11 - Main Menu Screen

3.7.2.3 Profile Manager Screen

In this screen user will see current user list in his/her game. The user can add a new user,

delete an existing user, edit an existing user, or read the progress report of the user in this screen.

This screen can be seen from Figure 12. When the user click to the add user, the “add new user

pop-up” will be seen on the screen. The pop-up screen of this functionality is shown at Figure 13. In

the add user pop-up screen user shall fill the user’s name, last name, age, and gender. Also, s/he

must take the photo of the user from the existing camera. After giving all the information, user clicks

the save button and adding operation has been finished.

VisionImpossible Oyun Diyarı

35

Figure 12 - Profile Manager Screen

Moreover, user can edit an existing user on the profile manager screen. Since the screen will

almost look like “add new user pop-up screen” we will refer to this pop-up screen. Editing operation

is almost same as adding operation. The only difference this time pop-screen will be shown with pre-

filled with chosen user’s info. Also, user can delete an existing user from user list. When the user is

deleted, it shall disappear from the list.

Figure 13 - Add New User Pop-Up Screen

Read report functionality of the game will be created with the domain experts. What it

includes is not certain for now

3.7.2.4 Map Screen

In this screen user will see our game levels as a map. Mock up organization of this screen is

shown at Figure 14. In this screen, the user can go back to the main menu, can exit from the game, or

can select a level that s/he wants to play. The organization of these levels will be arranged by

VisionImpossible Oyun Diyarı

36

consulting the child experts. The hardness of levels and which level includes which educational

purpose will be also done by consulting the experts.

Figure 14 - Map Screen

3.7.3 Screen Objects and Actions

Page Button Action

Welcome Screen

Edit profiles Directs to Profile Manager Screen.

Go to main menu Directs to main menu.

Exit Exit from the game.

Main Menu Screen

Go to Map Directs to game map.

Go to welcome screen Directs to welcome screen.

Go to profile page Directs to profile page.

Exit Exit from the game.

Profile Manager Screen

Go to main menu Directs to main menu.

Report Open parental report of selected
user.

Edit Edit the selected user.

Delete Delete the selected user.

Add user Pops up add new user screen.

Add New User Screen(Pop - Up) Back Directs to profile manager screen.

Save Save the user information and
create new user.

Map Screen

Go to main menu Directs to main menu.

Exit Exit from the game.

Play Starts the selected game
Table 13 – Description of the Screen Actions

VisionImpossible Oyun Diyarı

37

3.8 Structure Viewpoint

The structural view of the software is important as much as the architecture of the system,

therefore it is important to explain the structure viewpoint. Since the OyunDiyari system uses EDA

architectural pattern, it depends on EDA characteristics and structure. EDA has four main

components: the event generator, the event channel, the event processing engine and the event

activity. The event generator, which is the 3D sensor in our case, pushes the event data to the event

processor engine to process the event data via event channel. After the process, event processor

engine sends the results to the event activity which is responsible for outputting the results. The

Figure 15 shows the structure diagram of the OyunDiyari system.

Figure 15 - Structure Diagram

3.9 Interaction Viewpoint
Interactions between users and objects of Oyun Diyarı and data flow are described in interaction

viewpoint by using sequence diagrams. Following sections provides sequence diagrams the use cases

described in 3.1.

3.9.1 Gesture Recognition Interaction

This section describes the interactions between the player and the objects of the system while

recognizing the gestures of the player. The gesture recognition is included in all the use cases since

the all interactions are provided by it. All the levels are played with gestures, and the buttons and the

cursor are controlled by gestures. In order not to repeat in each sequence diagram, it is explained

only in Figure 16.

VisionImpossible Oyun Diyarı

38

Figure 16 – Gesture Recognition Sequence Diagram

3.9.2 Interactions between the System and the Actor Parent

This section describes the sequence of interactions and messages passed through them between

the actor parent and objects of the system. Figure 17, Figure 18, Figure 19, and Figure 20 shows the

sequence diagrams for the use cases UC1, UC2, UC3, and UC4 respectively.

Figure 17 – Add Player Sequence Diagram

VisionImpossible Oyun Diyarı

39

Figure 18 – Read Report Sequence Diagram

Figure 19 – Delete Player Sequence Diagram

VisionImpossible Oyun Diyarı

40

Figure 20 – Edit Player Sequence Diagram

3.9.3 Interactions between the Actor Player and the System while Starting a Level

This section describes the sequence of events when a player wants to start a level to play. It includes

the use cases UC6 and UC12. Figure 21 shows the sequence diagram that explains how a level is

started.

VisionImpossible Oyun Diyarı

41

Figure 21 – Starting a Level Sequence Diagram

3.9.4 Interactions between the Actor Player and the System while Playing a Level

This section describes the main game loop. Since it is same for each level except the game objects

and the way they are updated each frame, the playing level interaction is shown as a single sequence

diagram in Figure 22. It is responsible for the use cases UC6, UC8, UC10, UC11, and UC13 to UC35.

VisionImpossible Oyun Diyarı

42

Figure 22 – Game Loop Sequence Diagram

VisionImpossible Oyun Diyarı

43

3.10 State Dynamics Viewpoint
The states of Oyun Diyarı, transitions between them and the responses to the user events are

the main concern of state dynamics viewpoint. Figure 23 shows the state diagram of Oyun Diyarı

which includes all states of Oyun Diyarı and transitions between them with the causing events.

Figure 23 - State Diagram

VisionImpossible Oyun Diyarı

44

4 Appendices

4.1 Table of Figures
Figure 1 – Context Diagram ... 4

Figure 2 – Use Case Diagram for Actor Parent .. 5

Figure 3 – Use Case Diagram for Actor Player ... 8

Figure 4 – Use Case Diagram for the Use Cases Extending the Play Level Use Case for Actor Player .. 14

Figure 5 – Component Diagram .. 24

Figure 6 – Deployment Diagram .. 24

Figure 7 – Class Diagram ... 25

Figure 8 – Entity Relationship Diagram ... 31

Figure 9 – The producer – Consumer Pattern ... 33

Figure 10 - Game Welcome Screen ... 34

Figure 11 - Main Menu Screen .. 34

Figure 12 - Profile Manager Screen ... 35

Figure 13 - Add New User Pop-Up Screen ... 35

Figure 14 - Map Screen.. 36

Figure 15 - Structure Diagram ... 37

Figure 16 – Gesture Recognition Sequence Diagram .. 38

Figure 17 – Add Player Sequence Diagram ... 38

Figure 18 – Read Report Sequence Diagram ... 39

Figure 19 – Delete Player Sequence Diagram ... 39

Figure 20 – Edit Player Sequence Diagram .. 40

Figure 21 – Starting a Level Sequence Diagram .. 41

Figure 22 – Game Loop Sequence Diagram .. 42

Figure 23 - State Diagram .. 43

VisionImpossible Oyun Diyarı

45

4.2 Table of Tables
Table 1 – Description of the Level Class .. 26

Table 2 – Description of the GameObjectManager Class .. 27

Table 3 – Descriptions of the Game Object Class .. 27

Table 4 – Description of the Player Class .. 28

Table 5 – Description of the Pet Class ... 28

Table 6 – Description of the DatabaseManager Class .. 29

Table 7 – Description of the PCProcessor Class .. 29

Table 8 – Description of the Skeleton Class .. 29

Table 9 – Description of the OyunDiyari Class .. 30

Table 10 – Description of the Sensor Class ... 30

Table 11 – Entity Descriptions and Relations .. 31

Table 12 – Descriptions of the Fields of the Entities ... 32

Table 13 – Description of the Screen Actions ... 36

