
1

MIDDLE EAST TECHNICAL UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING

SOFTWARE REQUIREMENTS SPECIFICATIONS

Date of Issue:

13.01.2016

Project Advisor:

Dr. Onur Tolga ŞEHİTOĞLU

Team Name:

ARCADIA

Team Members:

Mehmet AKALIN - 1880871

Ertuğ UFUK - 1881572

Elif ŞAHİN - 1881846

Merve Gizem ŞENEL - 1881879

2

Contents
1. Introduction .. 3

1.1. Problem Definition ... 3

1.2. System Overview .. 3

1.3. Definitions, Acronyms, and Abbreviations .. 3

1.4. Assumptions and Dependencies .. 4

2. Overall Description ... 4

2.1. Product Functions ... 4

2.1.1. Use-Case Model Survey .. 4

2.1.2. Actor Survey .. 6

2.2. Interfaces .. 6

2.2.1. User Interfaces .. 6

2.2.2. Hardware Interfaces ... 6

2.2.3. Software Interfaces... 7

2.2.4. Communication Interfaces ... 7

2.3. Constraints .. 7

3. Specific Requirements .. 8

3.1. Functional Requirements ... 8

3.2. Nonfunctional Requirements ... 10

3.2.1. Usability .. 10

3.2.2. Reliability .. 10

3.2.3. Performance .. 10

3.2.4. Supportability ... 10

4. Data Model and Description .. 11

4.1. Data Description ... 11

4.1.1. Data Objects .. 11

4.1.2. Data Dictionary ... 12

5. References ... 13

3

1. Introduction

This document is a software requirement specification for a multi purpose flowchart interpreter.

In this document, first we define the problem and give the system overview. Secondly, we give

an overall description. Finally, we state specific requirements and data models.

1.1. Problem Definition

This project aims to overcome the natural obscurity of a conventional source code.

Understanding and optimizing a program's functionality can be confusing and time-consuming

solely by looking at a wall of text. Our purpose is to produce a web-based tool for visualizing a

program written with various languages to give users a bird's-eye view of their own product and

allow them to trace and modify it with a graphical interface and even build something new from

scratch with said GUI.

1.2. System Overview

The product of our project is a visual programming IDE which has a text/source-code editor, build

automation tools, visual debugger and graphical representations of data-structures.

Users write their codes with the editor and after validation, it is compiled and converted to a

flowchart showing the structure and the process flow of that code. Given visual chart gives core

information about the program and also user interface allows modification of that chart,

consequently creating a feature to change the initial code with visual control. Moreover, this

visual interface can be used to build a flowchart so it is possible to create an enitre program

without writing a single line of code.

In addition, debugging and apparent data structures are also visualized so the flow of the

program can be interactively traced. Thus, the overall system becomes quite comprehensive to

work with.

1.3. Definitions, Acronyms, and Abbreviations

GUI Graphical User Interface

IDE Integrated Development Environment

SRS Software Requirement Specification

Flow Chart

A formalized graphic representation of a
logic sequence, work or manufacturing
process, organization chart or similar

formalized structure.

4

1.4. Assumptions and Dependencies

 We assume that Clang is sufficent to parse through source codes of the programming
languages C, C++ and Objective-C.

 The GNU Project Debugger aka. GDB is assumed to be used for debugging for most, if not
every language we work with.

 For our every need in visualizing on a web browser, we will not need any other Javascript
library other than JointJS with its plugins.

 Our product will work properly on every up-to-date browser.

2. Overall Description

2.1. Product Functions

2.1.1. Use-Case Model Survey

Name Actor Description

Write Code User writes their code with the web-site’s editor.

Load From File User loads their own existing source code file to the text editor

Submit Code User submits the code in the text editor to be sent to server

Add Object User adds an object from palette to flowchart canvas by drag and drop

Move Object User drags the object on the canvas and attached links follow

Delete Object User deletes an object from the flowchart canvas

Add Link User adds a link between two objects in the canvas

Move Link User changes the object to which a link’s head is attached on the canvas

Delete Link User deletes a link on the canvas

Modify Object User
adds or clicks on an object, then a form pops up to fill/change
information about it

Submit Flowchart User submits the flowchart in the canvas to be sent to server

Run Debugger User runs the debugger with predefined options

Set Breakpoint User sets a breakpoint at the program for debugging

Show Data Structure User requests the visual representation of implemented data structures

Manage System Admin manages overall system,database, connections etc.

5

Figure – Use Case Diagram

6

2.1.2. Actor Survey

User: Defines people who visit the web-site of FlowCode to submit some code or

flowchart and possibly debug their program. Such users are assumed to have basic

knowledge about algorithms and programming.

Admin: Overseeing the performance of the system, admin manages the software by

installing updates if necessary.

2.2. Interfaces

2.2.1. User Interfaces

Our project is a web-based IDE so user interface is a single web page which is split into

two sections, flowchart canvas and source code editor. Users can load, build and

modify flowcharts on the canvas and code on the editor. It will also have interfaces to

register,login and view user profile. Any browser that is up to date can be used to open

this site. Below are some images showing what our web page will look like:

Figure – Initial Screen of Our Web Page

7

Figure – Basic assignmet statements and its corresponding flow chart

2.2.2. Hardware Interfaces

The system is purely software, which means it does not possess any hardware

interfaces.

2.2.3. Software Interfaces

Submitted codes and flowcharts are sent from client to server in order to be processed,

converted and sent back. With the purpose of making the client as lightweight as

possible, parsing, compiling and debugging are fully handled by the server and pushed

to client. Registered users can also upload and access codes via system database.

2.2.4. Communication Interfaces

Any communication between server and client is achieved via JSON.

2.3. Constraints

 Front-end design constraints consist of using HTML5, Javascript with JointJS library

and its plugins and JQuery/Ajax.

 Back-end constraints consist of using Python and Django.

8

3. Specific Requirements

3.1. Functional Requirements

Name: Write Code

Description: User should be able to write and edit their code on the text editor.

Data Flow: User input is shown on the client/browser.

Requirement: No pre-condition.

Name: Load Code from File

Description: User can load existing source code file to the editor.

Data Flow: File in user repository is sent to client.

Requirement: User must have an already existing code file.

Name: Select Compiler Language

Description: User should be given the choice of selecting compiler language.

Data Flow: Compiler language information to be sent to server is assigned by the user.

Requirement: No pre-condition.

Name: Submit Code

Description: User may initiate submission of the code any time they want.

Data Flow: Anything on the editor is sent to server as a JSON object.

Requirement: No pre-condition.

Name: Validate Code

Description: User should see if their submission caused a compile-time error for the selected
language.

Data Flow: Text in the editor is sent to the server to be checked for any compile errors.

Requirement: -User must make a submission.
-User must have selected the compiler language.

9

Name: Show Flowchart

Description: User will see their code as a generated flowchart on the canvas

Data Flow: The source code that was sent to the server is parsed and converted into a
JSON object which is then sent to the client to be visualized.

Requirement: -Submitted code must have passed validation.

Name: Build Flowchart

Description: User can build a flowchart by starting from scratch or by modifying an existing
one on the canvas with the object palette of the user interface.

Data Flow: User input is shown on the browser/client.

Requirement: To modify a flowchart, user first needs to load one.

Name: Submit Flowchart

Description: User can submit the flowchart on the canvas to get its source code equivalent
of the desired programming language on the text editor.

Data Flow: The flowchart as a Javascript object is sent to server to be translated and sent
back to client as a source code.

Requirement: No pre-condition.

Name: Debug

Description: User can turn on debugging mode to set breakpoints, run step by step etc. and
see the visual flow of their program by the animated flowchart.

Data Flow: Debugging is done on the server. Hence, each iteration of the debugging
process is done with information trade between client and server.

Requirement: There needs to be an existing, validated code to debug it.

Name: Visualize Data Structures

Description: User should be able to see the data structures which they implemented in their
code as visual blocks.

Data Flow: The data structures are processed via pointers in the server.

Requirement: There must be data structures implemented in the validated code.

10

3.2. Nonfunctional Requirements

3.2.1. Usability

The main usability requirement for users to have core knowledge about flowchart

structure, whether they want to convert flowchart to code or code to flowchart.

Users who convert their code to flowchart are expected to be somewhat familiar

with the programming language they are using. However, an alternate scenario

might negate that requirement, where the user uploads a third-party source code.

3.2.2. Reliability

Since FlowCode is based on a web client-server architecture, availability is directly

related to server condition and user internet connection. Server overload,

maintenance and attacks taken into consideration, the system is assumed to be

available 90% of the time and serve for days uninterrupted. Also, degraded mode

operations consist of making editions on text editor or flowchart canvas.

This system does not yield critical real-time operations so being out of operation is

tolerable for a few days in average.

3.2.3. Performance

Response time between client and server is 10 seconds in average and a minute

maximum.

For converting between flowcharts and source codes, the file is transacted as a

whole but in debugging and data structure visualization, transactions are handled

asynchronously.

When connection between client and server fails, user still can edit code and

flowchart.

3.2.4. Supportability

System is compatible for user account feature along with personal and public

repository for code and flowchart database to be integrated.

11

4. Data Model and Description

4.1. Data Description

4.1.1. Data Objects

Class Diagram is shown below:

Figure – Class Diagram

12

4.1.2. Data Dictionary

Data dictionary of the overall system :

Class Name Description

User
Users will have username and passwords when they register
to the system. They can also provide their e-mail.

Admin
Admin is mainly in charge of adding, updating and deleting

users. Therefore, his task is to manage the database.

SourceCode

Source code provided by the user is stored in a SourceCode

object to enable sending this code to the server and to

achieve the visual debugging. Lines are used to check whether

a breakpoint has been set.

FlowChart
FlowChart class holds the flow chart either drawn by the user
or the created one from the source code. It has graph and
palette attributes for this purpose.

Debug
Debug class keeps the current line number of the debugging
session and also the breakpoints that are set by the user.

Data Structure

Data Structures are processed as graphs and they also keep

variables that show what kind of structure they are and what

type of element they hold.

LinkedList
Link Lists don’t have links to their previous elements so we

omit the member “previous” while constructing a link list.

Double Linked List
Standard graph structure will suffice in the making of a doubly

linked list.

Array
In addition to our natural graph structure, the array structure

will keep the information of its length.

Tree
In a tree, an element will only know about its children so we

omit the member “previous” while constructing a link list.

Graph

Graph embodies the flowchart that is built or converted from

code. It holds all the nodes of the flowchart and their

relations.

13

Palette
Shapes and link instances reside in palette and they are

dragged and initialized from here.

Element

Elements are statement objects which populate the flowchart

and palette. They hold information about how they are

visually shown.

5. References

[1] IEEE Guide for Software Requirements Specifications," in IEEE Std 830-1984 ,

vol., no., pp.1-26, Feb. 10 1984, doi: 10.1109/IEEESTD.1984.119205, URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=278253&isnumber=6883

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=278253&isnumber=6883

