NERS PROJECT

SOFTWARE REQUIREMENT SPECIFICATION

(In accordance with IEEE 830-1998)

v1.0

Code Whisperers

Mustafa Murat Coskun - 1881143
Mehmet Gengol -1881226

Oguz Artiran -1881002

Ahmet Melih Gedikli - 1881200

1. INTRODUCTION
1.1 PROBLEM DEFINITION
1.2 PURPOSE
1.3 SCOPE
1.4 DEFINITIONS, ACRONYMS AND ABBREVIATIONS
1.5 REFERENCES
1.6 OVERVIEW
2. OVERALL DESCRIPTION
2.1 PRODUCT PERSPECTIVE
2.1.1 SYSTEM INTERFACES
2.1.2 USER INTERFACES
2.1.3 HARDWARE INTERFACES
2.1.4 SOFTWARE INTERFACES
2.1.5 COMMUNICATION INTERFACES
2.1.6 MEMORY CONSTRAINT
2.1.7. SITE ADAPTATION REQUIREMENTS
2.2 PRODUCT FUNCTIONS
2.2.1 PRIVILEGED USER USE CASE
2.2.2 USER USE CASE
2.3 CONSTRAINTS
2.4 ASSUMPTIONS AND DEPENDENCIES
3. SPECIFIC REQUIREMENTS
3.1 INTERFACE REQUIREMENTS
3.2 FUNCTIONAL REQUIREMENTS
3.2.1 MOBILE APPLICATION COMPONENT
3.2.2 WEB APPLICATION COMPONENT
3.3 NON-FUNCTIONAL REQUIREMENTS
3.3.1 PERFORMANCE REQUIREMENTS
3.3.2 LOGICAL DATABASE REQUIREMENTS
3.3.3 SOFTWARE SYSTEM ATTRIBUTES
3.3.4 DESIGN CONSTRAINTS
4. DATA MODEL AND DESCRIPTION
4.1 DATA DESCRIPTION
4.1.1 DATA OBJECTS
4.1.2 DATA DICTIONARY

5.PLANNING
5.1 TEAM STRUCTURE
5.2 ESTIMATED SCHEDULE
5.3 PROCESS MODEL

6. CONCLUSION

1. INTRODUCTION

This document is a Software Requirement Specification for the Android Mobile Application
named “NERS”.This document is prepared by the following IEEE conventions for software
requirement specification.This document includes all the functions and specifications with
their explanations to solve related problems as a project of METU CENG department.

1.1 PROBLEM DEFINITION

In the last two decade, Internet and mobile phones have increased rapidly. Nowadays, almost
all people has a mobile phone and different kind of mobile applications.This leads many
simplicities on people’s life in terms of communication. There are many beneficial mobile
applications and web applications for the humankind which ease their lives. However, there
are also some concepts that could not be resolved yet. There are many social platform
application on mobile phone and most of them do not socialize people in real life. There are
not enough social media platforms gather people in a place and do not enable users meet new
people in terms of their interests. Furthermore, there are not enough location-based
messaging which provide users to see the location of user and message with that user
simultaneously. Let us explain those needs in a scenario. First need in a mobile application is
location-based messaging. For example, two users message with each other and try to find
each other in a certain area. Using whatsapp, they can send each other their locations to find
themselves. However, in order to open those locations, whatsapp use Google Maps
application and this is the hard way for finding each other in real life. The easiest solution for
finding each other in real life while messaging is to create a system which provides
messaging and seeing locations at same time together. Second need is gathering people in a
certain area in terms of interests. For example, let us think a person who wants study a lesson
with a person who perfectly know that lesson. However, he may study that lesson with a
person who he does not know. There are not enough applications for that purpose. In our
project, considering those needs and problems, we are trying to develop a mobile Android
application who will meet those needs.

1.2 PURPOSE

Purpose of this software requirement specification document is providing complete
description of the features which will be implemented in this location-based social platform.
Furthermore, this document includes user scenarios, UML diagrams, working principles of
the system, internal and external interfaces.This document is going to serve as a guideline for
both the development team and users of the application.

Target audience of this project is mostly young people such as university students.The
purpose of this project named “NERS” is to create a new messaging system named
location-based messaging system and a new social platform which socializes people in real
life and give them a chance to meet new people with same interests. Furthermore, NERS will
create a new advertisement area for hangout places to introduce their places such as
restaurants, fitness clubs, pubs etc.In addition to these, these places create events that catch
users attention with using NERS about what they work on.

Since more than one version of this document may be released in the future in case of
modifications to adapt changes of requirements and specifications of the project.

1.3 SCOPE

As it is described in the Problem Definition section, there is no social platform which has
location-based messaging and gather different people with their interests and provide an
opportunity for users to meet new people with same interests.

Our project named “NERS” has a purpose for solving those problems as mentioned above
and described in the Problem Definition section. Our project has mainly two major features.
First major feature of our Android Mobile Application is location-based messaging system.In
our location-based messaging system,user can see location of friend who is messaging with
him simultaneously.In other words,a user can see location of the friend and message with that
friend on the same interface.This is the main aspect of location-based messaging
system.Second major feature is creating events and sharing post with the locations,photos and
contents.Event Types are private,public,privileged events and each event has some features
inside.Firstly,a private event or private post of a user can only be seen by the friends of the
user within a certain radius. User can share post or create events such as home party and in
this way , user can easily contact with his friends and keep in touch with his friends.This
event or post sharing is like Facebook, Twitter.Secondly,public event or public post can be
seen by everybody within a certain radius.This event or sharing post is like private event

creating but this event type makes people a social people in real life because this event
provide opportunities for people to meet new people.Lastly,privileged events created by
employees or boss of hangout places and can be seen by everybody within a certain
radius.This event type create a new advertisement area for hangout places.For example, a
hangout place like a pub organize a live music program for a night and create a privileged
event on NERS mobile android application and reach as much as possible people in that
area.These features are the main part of our project NERS.We will try to explain our project
in the following section in detail.

1.4 DEFINITIONS, ACRONYMS AND ABBREVIATIONS

SRS Software Requirement Specification

GCM Google Cloud Messaging

GUI Graphical User Interface

oS Operating Systems

GPS Global Positioning System

User Anybody who uses the application
NERS

IEEE Institute of Electrical and Electronic
Engineers

External Usage Android Disk Usage

API Application Programming Interface

SDK Software Development Kit

1.5 REFERENCES

IEEE. IEEE Std. 830-1998 IEEE Recommended Practice for Software Requirements
Specifications. IEEE Computer Society, 1998.
Class Diagram

https://drive.google.com/file/d/0B-glJfM9ZYY9ZGcxZ05sZm1JRjA/view?usp=sharing

1.6 OVERVIEW

This document includes six major topics for the following chapters of software requirements
specification.Firstly, overall description of the product perspective, functionality of the
product, dependencies and constraints are explained.In the following chapter, specific
requirements like interface, functional and non-functional requirements are mentioned.In the
following chapters, behavioral and data model are discussed.Finally, software requirements
specification document end with conclusion.

2. OVERALL DESCRIPTION

This chapter of the SRS is about general factors that influence the product.Moreover, this
chapter contains interfaces of product.Also, this part provides a background for requirements
which will be defined in Chapter 3.

2.1 PRODUCT PERSPECTIVE

In this project, we will use different cloud system such as Google Cloud Messaging and
different Google APIS such as Google Maps API and Google Places API. We will use
Google Maps API and Google Places API for events and location-based part of the project
and Google Cloud Messaging for location-based messaging system. For instance, we will use
Google Cloud Messaging system for the connection between server, database and Android
device or tablets. Application sends a message request to the server and server connecting
with the Cloud and server sends the message to the target user. GCM is used for only making
connection between two users. In the following sections, we will try to explain our project
interfaces in detail.

OVERALL USE CASE DIAGRAM

2.1.1 SYSTEM INTERFACES

This Android Mobile application will be implemented in programming language Java and
development environment is Android Studio developed by Intellij.In this section,we will
mention APIs,SDKs,databases that we will use.

SDKSs : We will implement our mobile application with only using Android SDK which is
SDK version 21.The reason behind using this version is because 22 or highest SDK version
is not stable yet.

APIs: We will use Google Places API and Google Maps API V2 for implementing our
mobile application because our project is based on locations.The services and functions
provided by Google have very essential role in our application.

Cloud System:We will only use Google Cloud Messaging cloud system provided by Google
in our application for realising messaging system.This cloud will be used for the connection
between Android devices,PHP web server and Mysql Database.Let us explain this
connection with a scenario.For example,in messaging system, one Android device sends a
message request to the PHP web server and get the target device from the Mysql database and
sends registration Id of the target device to the Google Cloud Messaging.After then,Google
Cloud Messaging messaging sends message to the target device using CURL library in PHP
and push notifications to the target device.This is how messaging system works in briefly.

Databases: We will use mainly Mysql Database for our application.

Server: We will use PHP Server for our mobile application with Mysql Database.Our web
server will be rented from https://www.digitalocean.com and location of web server is in

Amsterdam,Netherlands.

Database and Server Manipulation: We will use PhpMyAdmin and FileZilla interfaces for
manipulating our server and database manually.PhpMyAdmin will be used for Mysql
Database and FileZilla will be used for PHP web server.

2.1.2 USER INTERFACES

Since we will have a mobile application and we desire to be used by as much as
possible people,we will aim that user interfaces of this application will be
comprehensible and easy to use. In this section ,we will try to give best explanations
about our interfaces.

2.1.2.1 Welcome Page Interface

This is the first interface that user will see when user uses the application for the first
time.In this interface,there will be a logo of NERS and slogan of NERS.

2.1.2.2 Phone Number Verification Interface

This is the first interface when a user register to the NERS application.NERS will
have to verify user’s phone number for the security and avoid fake accounts.In this

https://www.digitalocean.com/

interface,after user enters his phone number,verifying process will start. After
verifying phone number,this interface directs users to register interface.

2.1.2.3 Register Interface

In this interface, NERS will enable users to register into the NERS system.After entering
necessary informations,user can register to the application.Furthermore,in this interface,user
can also upload their profile photo to the PHP web server.

2.1.2.4 User Profile Interface

In this interface,a user can see his informations,profile photos,lastly created events etc.Also,in
this interface he may change his informations or profile photo.

2.1.2.5 Other Users’ Profile Interface

In this interface, a user can see a profile of friend or profile of users that he/she is not
friend with and learn informations of that user such as created events or university
information.A user can also send a friend request to a person in this interface.

2.1.2.6 Notification Interface

In this interface,notifications will be shown.These notifications are something like
friends request,created event by a friend or created event nearby a user.

2.1.2.7 Main Interface

This interface is the main interface after registration and welcome page.This interface
is mainly about created events nearby the user.This interface will split up three
subinterfaces named “private event interface”,”’public event interface” and “privileged
event interface”. These three subinterfaces are mentioned in the following sections.
2.1.2.8 Private Event Interface

We will show the private events nearby the user in this interface. A private event is
the event created by friends of the user.When a request comes from friend of user,
user can accept the invitation for joining event.

2.1.2.9 Public Event Interface

We will show the public events nearby the user in this interface.A public event is the
event created by anybody even if user does not know the creator of the event.If the
user want to participate the event ,he can send the request to the creator of the creator
of the particular event.

2.1.2.10 Privileged Event Interface

We will show the privileged events nearby the user in this interface.A privileged event
is the event created by employees or boss of hangout places such as pubs,restaurants
or a fitness club.User can join privileged events without sending request.

2.1.2.10 Particular Event Interface

This interface will be used for showing the informations of an event such as
description of the event, location of the event or the creator of the event.If it is private
or privileged event ,location of the event can be seen by the user.On the other hand,if
this is a public event ,location of the event can not be seen by the user if creator of the
event did not accept the joining request coming from the user.After the creator
accepts the joining request,that user can see the location of the event.This property
inside NERS provides security of users.

2.1.2.11 Creating Event Interface

This interface provides opportunity to the user to create new event.A user can either
use his current location or places already on the map.If the user want to create a
private event , he can invite his friends to the event.Furthermore, a user should
describe the enough informations of the event.If the user want to choose a location
already on the Google map,this interface will direct to the Google Places
Interface.This interface will be mentioned in the following section.

2.1.2.12 Google Places Interface

This interface enables a user to choose a location for creating event different than
present location of user.User can travel around the map and choose location or he/she
can search a location for creating event using search button.

2.1.2.13 Seeing Nearby Friend Interface

This interface will be created by using Google Map Api and in this interface, user
can see the nearby friends on the map with their locations.This interface has many
features.For example,user can see the locations of the friends within a certain radius
determined by the user.

2.1.2.14 Chatting Interface

This interface will be used for showing the friends who the user messaged with
before.In this interface, if the user click on a specific friend ,this interface directs to
the messaging interface with that interface.

2.1.2.15 Messaging Interface

This interface is the main messaging interface.This interface contains two
subinterfaces inside.One interface will be used for showing locations of two friends on
the map and scales the map in terms of markers of the users.Photos of the friends are
shown instead of locations.The locations are updated in every 5 seconds(may be
changed later) and also on the Map.Second interface is mainly for the

messaging.Messaging history and message sending are handled and are shown in this
interface.We will store chat history on Sqlite database on every user’s mobile
phone.Once a user enter into this interface ,last 30 messages will be shown firstly.If
user want to show older messages ,user can click on “load earlier messages” and can
see the older messages in the chat history.

The interfaces mentioned above was determined by the members of the Code
Whisperers.However,since we develop our project with Agile methods ,the interfaces
may be changed in the future by the team.

2.1.3 HARDWARE INTERFACES

This mobile application,NERS,will work on Android Devices and Tablets. Since the
application must run connected to internet and need a location data, Android devices
must have a GPS unit and internet connection in order to run this application.

2.1.4 SOFTWARE INTERFACES

Since our project is an Android application,in order to be runned by an Android
Device,an Android device must have minimum SDK 9.0 or higher SDKs. It means
that %91 of all Android devices can run this application.

2.1.5 COMMUNICATION INTERFACES

This application will use PHP web server and cloud services named Google Cloud
Messaging. GCM push necessary notifications such as a message to mobile devices
via the Internet. Thus,for that reason, we will use HTTP protocols and methods inside
this protocol for communication over internet.Furthermore,for packet transmissions
are achieved through using TCP/IP because its reliability is important for the
application.

2.1.6 MEMORY CONSTRAINT

We are expected that NERS will occupy at most 20 MB in the external storage and
will have 30 MB Ram usage.We will develop NERS with trying to occupy less RAM
usage.External storage usage is not in our hands.It is determined by Android SDK.

2.1.7. SITE ADAPTATION REQUIREMENTS

After developing NERS, the application will be available on Google Play Store.As
mentioned in 2.1.4,Android device must have SDK 9.0 or higher SDKSs in order to run
this application.

2.2 PRODUCT FUNCTIONS

2.2.1 PRIVILEGED USER USE CASE

See Priviliged Event
:' See User Profile
,tcextend» -

ccextend»

% ’.< ------------ See Event HISW}’
u extends

Priviliged User wextends

:cextend»
i aextends

Create Priviliged Event

Fig - 2.2.1

Use Case Description Figure

Registration Privileged user should identify them to | Fig-2.2.3
be privileged and register the system.

Login Privileged user can log in to the system | Fig-2.2.7
in order to use the system.

Logout Privileged user can logout from the Fig-2.2.6
system.

Delete account Privileged user can delete their account. | Fig-2.2.8

See Privileged Events Privileged user can see all privileged Fig-2.2.5
events

See Privileged User Profile | Privileged user can see their and other Fig-2.2.10
users’ profile who participated their
event(s).

See Participants of Events Privileged user can see the users who Fig-2.2.9
participate the events.

See Event History Privileged user can see event history of | Fig-2.2.4
them.

Create Privileged Event Privileged user can create privileged Fig-2.2.2
event.

@)

; ; -_— Create Privileged Event

Privileged User

Fig - 2.2.2

EE_.—-(I:Ee—g.is—te}\

S

Priviliged User

Fig - 2.2.3

E% See Event History

Privileged User

Fig - 2.2.4

E% See Privileged Event

Priviliged User

Fig - 2.2.5

xR — =

Privileged User

Fig-2.2.6

R —C

Privileged User

Fig - 2.2.7

X

Privileged User

Fig - 2.2.8

E% See Participants on Event

Privileged User

Fig - 2.2.9

E% See Privileged User Profile

Privileged User

Fig - 2.2.10

2.2.2 USER USE CASE

aextend»___

s
Response Friend Request P W S See Location of Friend
Add Friend X «wextends

extends
¢ ” Send Message

| wextends
i _-~dextends

___________________ Create Event

i Register ... aextends» <F_\-—-.__ :
r\‘.‘h Create Public Event

General User
wextends --

Participate Event
«extends: \u‘extend» ol Peiwabs Event

«extends :
K 4 aextends:
: See Event History
See User Profile L
. Send Invitation

Delete Account

A

Fig - 2.2.11
Use Case Description Figure
Register User can register to NERS by verifying Fig-2.2.17
their phone numbers

Delete account User can delete their account. Fig-2.2.25

Respond Friend Request User can respond friend requests Fig-2.2.18

Add Friend User can add people as friend Fig-2.2.12

Create Event User can be able to create public/private Fig-2.2.13
event

Participate Event User can be able to participate all kinds of | Fig-2.2.14
events by sending requests. All request
will be responded by the creator of event.

See Event History User can see the event history(Fig-2.2.19
participated/created)

See User Profile User can see user profiles Fig-2.2.21

Unfriend User can delete people from their friend Fig-2.2.24
list

See Location of Friends User can see the location of their friends Fig-2.2.20
without any permission

Send Message User can send message to their friends Fig-2.2.23

Create Public Event User can create public event both based on | Fig-2.2.16
a privileged event or not

Create Private Event User can create private event both based Fig-2.2.15
on a privileged event or not

See Events User shall be able to see all events that Fig-2.2.26
they have permission on map.

Send Invitation People can send invitation to their friends | Fig-2.2.22

while they are creating private event

O

A

General User

———— Add Friend D
‘H-.,_‘_‘_‘_‘__-'___._._H_.-r"

Fig - 2.2.12

R — G

General User

Fig - 2.2.13

X

General User

Fig - 2.2.14

X

General User

Fig - 2.2.15

E% Create Public Event

General User

Fig - 2.2.16

R G

General User

Fig - 2.2.17

- Respond Friend Request

General User

Fig - 2.2.18

;l See Event History

General User

Fig - 2.2.19

% See Location of Friend

General User

Fig - 2.2.20

See User Profile

General User

Fig - 2.2.21

X

General User

Fig - 2.2.22

C
— Send Message

General User

Fig - 2.2.23

C

General User

Fig - 2.2.24

C
o

General User

Fig - 2.2.25

A —

General User

Fig - 2.2.26

2.3 CONSTRAINTS

e NERS shall operate on Android 9.0 or higher operating systems.There should
be at least 20 MB free external storage space.CPU speed and Ram capacity is
not big concern.

e Java shall be the implementation language with Android and Google Apis.

e Informations of the users and events shall be encrypted before transferred to the
PHP Server and database in order to main the security of the crucial
informations of the users and events.

2.4 ASSUMPTIONS AND DEPENDENCIES

e We assume that finding exact locations of the users and events ,GPS and
Internet services will give the exact longitudes and latitudes.

e We assume that Google Places API provides contemporary places.

e We assume that Google Maps API provides contemporary roads ,streets etc.

e Since we will develop our application with Agile methods, user interfaces and
functionalities may change in the future.It depends on the cycle of the project
and the team Code Whisperers.

e We assume that NERS application will be used by people frequently in the
future.We will expect that because this application needs people and events that
people create.Otherwise, it will not be useful application for people.

3. SPECIFIC REQUIREMENTS

3.1 INTERFACE REQUIREMENTS

The user interfaces that explained in section 2.1.2 can be found in below figures.

N T _al54%

Phone Number

21574 Dy

Verify

Name

Surname

User Name

Password
someone@example.com

XX/ XX/ XXXX

SIGN UP

Fig - 3.1.1 Registration Interfaces for Application

Component

Actors

Phone Number Verification

Before logging in the application, user has
to veriy his/her phone number.

User Registration

After phone number verification, user has to
fill out the required attributes like name,
surname, username, password, e-mail
address and birthday in order to register the
application.

NS = N T Lal53%m 22:02

\ % & oK O 100
% = Anitkabir L O 250
%’ e Milli Kiitiiphane Baskangi O 500
= O 1000
o R
£ ; O 5000
S: Distance Sen
U
Scale
Friends e
Add Friend
WaitingRequests
PrivateEvent ¥
Gol ShowEvents
Fig - 3.1.2 Fig-3.1.3
Menu interface of application Selecting distance interface

‘0. = il 76% W 18:40

‘0. % il 76% W 18:40

oguz oguz oguz oguz

" S
merve merve O j baggins Mustafa Murat .

baggins Mustafa Murat v
vulls O

~»

< @)] < O]

Fig-3.14 Fig-3.1.5
Adding friend interface Friends interface

Component

Actors

Scaling Map According To Location Of
Friends Of User

User can scale the map according to
location of friends of user.

Selecting distance as diameter to get an area
that friends locate

User can select the distance as diameter to
get area that friends locate.

Adding Friend User has to add friend in order to see the
location of his/her friend.

Waiting Friend Request Other user accept the friend request from
waiting friend request screen.

Friends User can see his/her friends using this

interface.

Private Event

User can create private events(events that
friends of user can only see)

Public Event

User can create public events that all users
of NERS create.

Show events

User can see events that friens of his/her
create

22:02

Tl

Anitkabir 4

A1 Njopeuy
o

Milli Kutiphane Bagkanligi
“

2180.Cd
212058

Kisehir Yalu

g g

ODTU - Orta
Dogu Tel

Universils =%
0
3 1427 G
70;

Google ~ 4

Map contains markers that show
location of friends of user

Component

Actors

Map

User can see the location of friends of
his/her in this interface.

N T Lal42%m 23:01

Tithggy
310y

SR

&
1427. Cd. et i

7
71 Matazgi g,

1065, 0,

Mevlanagy,

Google

ikinci kisim hangisi

product description galiba

Your message SEND

Fig-3.1.7
Messaging interface

o
DT

Component

Actors

Messaging

When user click the friend on friends
interface, he/she are directed to this
interface.In this interface, user can send
message to his/her friend, can receive
message from his/her friend.In the
meantime, user can see his/her location and
location of his/her friend.

erite Event Description

Pick start date
Pick start time
Pick end date
Pick end time
Choose location

Create event

Fig-3.1.8

Creating private event interface

X F _al52%

22:04

Ayarla

Fig-3.1.10
Selecting start and
end time of event interface

05 Oca 2016 Sal

Ayarla

Fig-3.1.9
Selecting start and
end date of event interface

Choose event location

@ Use my location

(O Let me choose event location

Done

Fig-3.1.11
Choosing event location interface

< Biryer segin Q

o2 o Qyurucu
o O =)
Odtii Spor Salont Ty Tiirkiye Is B
Q0.7 Anl
(Z100]
o (=)
Odti Saglik Ve
Rehberlik Merkez
(=]
(=)
P
O
o0 tY :

Google

° Bu konumu seg
(39.8908742, 32.7879198)

YAKINDAKI YERLER

Odtu Saglik Ve Rehberlik Merkez
Universiteler, 06800 Gankaya/Ankara, Tiirkiye

ODTI] - Orta Dodu Teknik UIniversit.
Fig-3.1.12
Choosing event location
different than present location of user
interface

Component

Actors

Creating private event

When user click private event on menu
interface, he/she is directed to this interface.

Specifying the description of event

User can write the description of event in
order to tell the topic of event to other users.

Selecting start date and end date of event

User can adjust the start date and end date
of event using this dialog.

Selecting start time and end time of event

User can adjust the start time and end time
1f event using this dialog

Choosing location of event

User can use his/her present location for
creating event either user can select other
location for creating event with clicking let
me choose event location button.

Choosing event location different than
present location of user

User can select event location with
travelling around map or user can search a
location for creating event.

Recording event

User can record event that he/she create
with clicking create event button.

T aloes

15:55Q [Oy

island
Iceland

United

Kingdom
/j\
P Event Information
Atlanti \ ¢ I]
(;f;a;:rlwc 7/‘.1“#! \‘r w2 ‘fé\i\ e
" Algeria { Libya | FOYPEY » rusya bekle beni
i(\‘ ‘MEL //4; h\cl B, el
X S Tchad, = 2016-0-10 2016-0-15
py Dy TigeriaShade Y 20:46 21:45
Ry ' s
i s A] 55.755826 37.6173
Brasil zahia
L B — Join
.}):!DlIVI/EL> . Madagasikari
“7" \Z 1 Do Béw‘t/syxa\nai Madagascar
(A~ Atlantico Sul f ;
(D South Africa
Argentina
T
Southern
Go gle Ocean
Fig-3.1.13 Fig-3.1.14
Showing events that Seeing information of event interface
friends of user create interface
Component Actors

Showing events that friends of user create

User can see events that friends of his/her
with clicking show events button in menu.

Seeing information of event

User can see information of event when
he/she click long marker of event in map.

Joining event

User can join event with clicking join
button using information dialog.

3.2 FUNCTIONAL REQUIREMENTS

3.2.1 MOBILE APPLICATION COMPONENT

3.2.1.1 FUNCTIONAL REQUIREMENT 1

User shall be able to verify his/her phone number before actual registration
process.

3.2.1.2 FUNCTIONAL REQUIREMENT 2

After the phone number verification process, user shall be able to register to the
application filling out required attributes in register interface.

3.2.1.3 FUNCTIONAL REQUIREMENT 3

User shall be able to delete his/her account from system of application.

3.2.1.4 FUNCTIONAL REQUIREMENT 4

User shall be able to add friend in order to see the location of his/her
friend.(Other user has to accept friend request.)

3.2.1.5 FUNCTIONAL REQUIREMENT 5

User shall be able to delete friend in his/her friends.

3.2.1.6 FUNCTIONAL REQUIREMENT 6

User shall be able to block friend in his/her friends.

3.2.1.7 FUNCTIONAL REQUIREMENT 7

User shall be able to see location of friends on main map.

3.2.1.8 FUNCTIONAL REQUIREMENT 8

User shall be able to scale the main map according the location of friends.

3.2.1.9 FUNCTIONAL REQUIREMENT 9

User shall be able to select the distance as diameter in order to see friend in
certain area.

3.2.1.10 FUNCTIONAL REQUIREMENT 10

User shall be able to see his/her friends.

3.2.1.11 FUNCTIONAL REQUIREMENT 11

User shall be able to chat with one friend while user is seeing his/her location
and his/her friend’s location

3.2.1.12 FUNCTIONAL REQUIREMENT 12

User shall be able to create private event that friends of user only can see.

3.2.1.13 FUNCTIONAL REQUIREMENT 13

While user is creating private event, user shall be able to select friends in order
to share event only with them.

3.2.1.14 FUNCTIONAL REQUIREMENT 14

User shall be able to create public event that all users of application can
see.(Other users can send a request to user for joining event.It’s user’s choice
whether he/she accept the request or not.)

3.2.1.15- FUNCTIONAL REQUIREMENT 15

User shall be able to see private events that shared with him/her on map.

3.2.1.16 FUNCTIONAL REQUIREMENT 16

User shall be able to see all public events on map.
3.2.1.17 FUNCTIONAL REQUIREMENT 17
User shall be able to see all privileged events on map.
3.2.1.18 FUNCTIONAL REQUIREMENT 18

User shall be able to accept request from creator of private event for joining
event.

3.2.1.19 FUNCTIONAL REQUIREMENT 19
User shall be able to send a request to creator of public event for joining event.

3.2.1.20 FUNCTIONAL REQUIREMENT 20

User shall be able to join privileged event without sending request to the creator
of privileged event.

3.2.1.21 FUNCTIONAL REQUIREMENT 21

User shall be able to receive notifications when friend request comes and event
that invited by other users is created.

3.2.1.22 FUNCTIONAL REQUIREMENT 22
User shall be able to see his/her profile.

3.2.1.23 FUNCTIONAL REQUIREMENT 23
User shall be able to see profile of other users.

3.2.1.24 FUNCTIONAL REQUIREMENT 24

User shall be able to edit his/her profile.

3.2.1.25 FUNCTIONAL REQUIREMENT 25

User see events that he/she created and events that he/she joined in events
history.

3.2.2 WEB APPLICATION COMPONENT

3.2.1.1 FUNCTIONAL REQUIREMENT 1

Privileged user shall be able to register to the application filling out required
attributes in register interface before he/she log in to the application.

3.2.1.2 FUNCTIONAL REQUIREMENT 2

Privileged user shall be able to log in to the system in order to use the
application.

3.2.1.3 FUNCTIONAL REQUIREMENT 3

Privileged user shall be able to delete his/her account from system of
application.

3.2.1.4 FUNCTIONAL REQUIREMENT 4

Privileged user shall be able to create privileged event that all users of
application can see.

3.2.1.5 FUNCTIONAL REQUIREMENT 5

Privileged user shall be able to see events that other privileged users create.

3.2.1.6 FUNCTIONAL REQUIREMENT 6

Privileged user shall be see his/her profile.

3.2.1.7 FUNCTIONAL REQUIREMENT 7

Privileged user shall be see profile of other privileged users.

3.2.1.8 FUNCTIONAL REQUIREMENT 8

Privileged user shall be able to see participations of events that he/she create.
3.2.1.9 FUNCTIONAL REQUIREMENT 9

Privileged user shall be able to see profile of other privileged users.

3.2.1.10 FUNCTIONAL REQUIREMENT 10

Privileged user shall be able to see the events history of him/her.

3.3 NON-FUNCTIONAL REQUIREMENTS

3.3.1 PERFORMANCE REQUIREMENTS

*NERS shall be able to support at least 100.000 simultaneous users.The
capacity can be extended in the future if needed.

*There will be large amount of information to be processed in database like user
profile informations, friendship conditions, event informations, events joining
conditions, messages etc.This is why, server will be enough space to overcome
this occupation.

*All of the functions such as registration, sending messages, receiving
messages, seeing locations of friends on map, seeing events on map shall
perform in less than 3 seconds.

*TCP and UDP protocols are considered for transmission between android

device and web server.UDP is a faster protocol comparing to TCP but not

supporting enough reliability.Since reliability is a topic which can not be

ignored, TCP is a valid choice.This is why, HTTP protocol that works with TCP

is used in project.

3.3.2 LOGICAL DATABASE REQUIREMENTS

*In the database, integer, double, varchar, date type of informations will be

held.

*Stored informations will be used for messages, events, profile of users and

friendship of users etc.

*ER diagram of project that shows data entities and relationships between them

can be seen below.

int(11)
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)
varchar(255)
int(11)

text

int(11)

FriendShip Relation iz
PK | usernamel | varchar(255) ParticipantRelation e g:ﬁ:liltc)les ctription
PK | username2 | varchar(255) EreataE
status int{10) PK | username varchar(255) =(CO—H startdate
E% E% PK | eventlD int(11) Has enddate
participationStatus | int(11) startclock
endclock
Friends \ith Friends|Of il
event_multimedia_path
Participates eventtype
Users
name varchar(255)
surname varchar(255) Has
phone_number |varchar(15) |y
PK | usernams varchar(255) | Lreates
password text
stafus varchar(1)
email varchar(255) %2
birthday varchar(15) Has Google Map Location
registration_id | text } &
picturepath text lat | double
id int(10) long | double
user_type int
ends
Messages
username varchar(255)
message text
message_time |varchar{255)

Figure 3.3.2 Entity-RelationShip Diagram

3.3.3 SOFTWARE SYSTEM ATTRIBUTES

3.3.3.1 SECURITY
Security issues on application side

*Other applications on user’s phone should not reach and manipulate stored
data in phone of user.

*Stored data in mobile device and data to send database should be encrypted.
*Sended and received data should be transferred via HTTP connection.
*Password characters should be displayed as black dots in registration interface.
*Password shall be at least 6 characters.

*If user enters his/her password 5 times while he/she is deleting account,
informative mail should be sent to the user.

Security issues on database side

*Users should not reach and manipulate stored data of other users in database.
*Data that come from application should be decrypted in database side.

3.3.3.2 AVAILABILITY

*The system should be available for 7 days and 24 hours.

*In the application side, application should be tested against unexpected errors
and failures before releasing the first version and updated versions of
application.End-product should be error free.

3.3.3.3 MAINTAINABILITY

*While system is developing, version control system such as gitlab should be
used in order to reduce complexity, make the system traceable.Also, thanks to
gitlab, while more than one developer is developing system, if the system has an
unwanted crash, code can be recovered.

*When new interface or component is wanted to add the system, any problem
should not occur.System should be implemented in this way.

3.3.3.4 RELIABILITY

*If any interface or component of system does not work properly, informative
message about error should be displayed to the users.

*There should be a backup system for holding all stored data of system such as
users, events or friendships in case of failure of the system.

*This system should keep the database updated.

3.3.3.5 PORTABILITY

*Since the application is Android application, the system will run on any
platform that has Android OS.
*The version of Android Operating system on device should bigger than 3.0.

3.3.4 DESIGN CONSTRAINTS

There is no specific design constraints in this project.

4. DATA MODEL AND DESCRIPTION

4.1 DATA DESCRIPTION

4.1.1 DATA OBJECTS

User Event
EventiD: int
~createrOfEvent string
-phone number: string -eventDescription: string
-Username: string startDate: string
+pastEvents: Event(’] -endDate: strings
ool 55 location: Google Map Location
-eventType: int
+getEmail(): string "
] -participants: string[‘]
+getPassword(): string s it
+getPastEvents(): Event[*] Svemtbae. Wy
ge T eventMultimediaPath: string
string): UserLi 6]
*Events(eventType: int. creatorOfEvent. string, eveniDescriplion: string, Usemanme: string, startDate: siring, endDate: sting, location: Google Map Locafion)
1 R +getEventld(): int
+getCreatorOfEvent(): string
General User +getLocation(): Google Map Location
Privileged User P sgesiDate(: suing
Pid it ~sumarme: srin il R
“location” Google Map Location -location: Google Map Location Jgetberticpants) stringl*]
+company_name: string -birthday- date getEventRate(): int
e +getEventMultimediaPath(): string
gender: string
“getPid): int status- int
+getLocation(Pid): Google Map Loeation GCM ID: string
+getName(). string

+getSumame(): stiing
tLocation() e Map Locat
1 IS:B ﬁ;a‘;;’\) éj;;qu tap Location Private Event Public Event Priveleged Event
+getGender(): string
+getStatus): int

cinterfacex
UserActions

roviders: UserL| [']): AnroidListView
+secWaitngRequests(userListProviders: UserListProvider|"]): AnroidListView
+showNearFriends(userListProviders: UserListProvider*], radius: inf): Google Map Cbject
userListProvider: UserListProvider)
+respondFriendRequest(userListProvider: UserListProvider, accept_reject: int)
+deleteFriend(userListProvider. UserListProvider)

nvitationForPrivateEventToF riend(UserListProvider userListProvider, event: Event)
int. eventlD: int, location: Google Map Location]

1.* +sendEven
+pariicipateEven
Event)

Android Buttons +createEvent(evel
+Login(usemame password: st

+Register(my_usemame: siring, my_phone: string, my_password: string, my_emai: string)

+seePastEventsOfUser(userL istProvider: UserListProvider)

+seeProfileOfUser(userListProvider. UserListProvider)

+seEventnformation(eventD: int)
OnT!

eFriendsOn s: UserListProvider(']): Google Map Object
1" | +seeEventsOnTheMap(events: Event{‘]): Google Map Object 1
quesiF; P Event)
+getEventsWithinRadius({username: string, radius: int)
0.+
0.
ChatMessage
UserListProvider “usemameOiMe: string
-isMe: boolean
usemame: string s sy
-ame: stting -messageTime: siing
pictureUrl: string -usemameToSend: string
-status: int
+ OfMe: strin :Me: bool st aTime: meToSend: st
+UserLisiProvider(usermame: string, name: sting, pictureUrl; string, status: inf) éewsemmeofw g e Do, MSASARS: SN, Messagelime R, DRRaraT S e Sinnel
+getUsemame(). string aatlio(): boct
19sthlamedy. sifng +getMessageTime(): string
+getPictureUrl(): string +getUsermeToSend(): stiing

+getStatus(): int

Figure 4.1.1 Class Diagram (If the class diagram can not be
read there is a class diagram link in 1.5 References section)

In our data model, there are two main classes which are User and Event. In
addition, private event, public event and privileged event classes are generalized
by Event. Also, user generalizes privileged and general user classes. Moreover,
there are two helper classes which are UserListProvider class and ChatMessage

class. To implement each functional requirements, we use user actions interface,
in the implementation of the interface all classes are used to handle user
requests. UserListProvider is used almost in every user action. ChatMessage
class is used for messaging activity.

4.1.2 DATA DICTIONARY

Objects Description
User User is a major class which is used from user actions

interface.User class is a singleton class.

Attributes:

User username: holds username of user, username is unique.
password: holds passwords of user.

email: holds email of user.

phone number: holds phone number of user.
pastEvents: holds past events of user.

Functions:

getPhoneNumber(): return phone number of user.
getEmail(): return email of user.

getPassword(): return passwords of user.
getPastEvents():return past events of user.
fetchFriends(): returns friends of a user.

Privileged Privileged User is generalized by User class. This class
User represents the private entities like hangout places.
Attributes:

Pid: hold privileged user 1d, it is also unique.

location: holds location of the place represented in Google
Map Location

company_name: holds place or company name.
Functions:

getPid(): returns Pid of the privileged user.

getLocation(): returns location of the place
setPid(params): sets the Pid of the privileged user.

General General User is generalized by User class. This class
User represent the normal users of the application.

General
User

Attributes:

name: holds name of the user

surname: holds surname of the user

location: holds the location of the user, this is represented by
Google Map Location

birthday: holds the birthday of the user

gender: holds the gender of the user

status: holds the online or offline status of the user.
GCM_ID: holds GCM_ID of the user, this ID is unique and is
given from Google Cloud Messaging. this used in messaging.
Functions:

getName(): return name of the user

getSurname(): return surname of the user

getlLocation(): return location of the user

getBirthday(): return birthday of user

getGender(): return gender of the user

getStatus(): return status of the user

getGCMID(): return GCMID of the user.

setName(params): sets the name of the user
setSurname(params): sets the surname of the user
setBirthday(params): sets the birthday of the user

setGender(params): sets the gender of the user

Event

Event is a major class which is used in user actions interface.
Event is singleton class.

Attributes:

eventID: holds eventld of the event, this is unique
creatorOfEvent: holds username of the creater of the event
eventDescription: holds the description of the event like,
purpose of the event, how will be the event.

eventType: holds the type of the event like private, public or
privileged.

startDate: holds the startdate of the event

endDate: holds the enddate of the ever

location: holds the location of the user which is represented as
Google Map Location.

participants: holds usernames of participants of the event
eventRate: holds eventRate of the event which is from 0 to 10
eventMultimediaPath: holds directory path of the
representative picture of the event

Functions:

getEventID(): return identifier of the event
getCreatorOfEvent(): return username of the creator of the
event

getlocation(): return location of the event

getStartDate(): return startdate of the event

getEndDate(): return enddate of the event

getParticipants(): return usernames of participants of the event
getEventRate(): return event rate of the event.
getEventMultimediaPath(): return directory path of the
multimedia of event.

getEventType(): return the type of the event

Private
Event

Private event class is generalized by event class. When event
type is 0 the event is private event. The participants of the
event are determined by creator.

Public Event

Public event is generalized by event class. When event type is
1 the event is public. Anyone can participate this event.

Privileged

Privileged Event is generalized by event class. When event

Event type is 2 the event is privileged. This type of event belongs to
privileged user. Only privileged users can create this type of
event.

User UserListProvider is a helper class for user actions interface.

ListProvider | This class is widely used by interface and other classes. It
consists most widely used attributes of the User class. Also it
is a singleton class.

Attributes:

username: holds username of the user

name: holds the name of the user

pictureurl: holds the directory path of the user picture
status: holds the offline or online status of the user.
Functions:

UserListProvider(params): constructor for the userlistprovider
class

getUsername(): return username of the user

getName(): return name of the user

getPictureUrl(): return the directory path of the user picture
getStatus(): return the status of the user.

Chat ChatMessage is a helper class for actions interface. This class

Message is used in sending and fetching messages. ChatMessage is a
singleton class.

Attributes:
usernameOfMe: holds username of the sender side
isMe: holds if the message is sended by me or get by

Chat opponent side

Message message: holds message text of the message

messageTime: holds the sending time of the message.
usernameToSend: holds the username of the the receiver
Functions:

ChatMessage(params): constructor for the ChatMessage class
getUsernameOfMe(): return username of the sender side
getlsMe: return if the is sended by me or not

getMessageTime(): return message time
getUsernameToSend(): return username of the receiver side.

Interfaces

Descriptions

UserActions

Functions:

Register(params): takes action when user click on register
button. After click, if the information is appropriate the
register information is recorded on database.
sendFriendRequest(params): takes action when user clicks
on add friend button. After click, waiting request is
recorded on database.

fetchWaitingRequests(paramas): takes action when user
click on waiting requests tab, after click, the waiting
requests are fetched from database.
seeWaitingRequests(): works with fetchWaitingRequests
function, after fetching this function show these datas to
the user.

respondFriendRequest(params): after user call of
seeWaitingRequests user is able to see waiting requests,
from here user can click on accept or reject friend request.
After that click, this function takes on and depending
accept or reject it organizes database.
fetchFriends(params): this function is called by some other
funtions. it fetches friends of a user from database.
seeAllFriends(): works with fetchFriends function, takes
action when user clicks on Friends, after fetching process
this function shows fetched data to user.
deleteFriend(params): takes action when user clicks on
delete friend button. Afer click, the friend relation on the
database is deleted.

sendMessage(params): takes action when user clicks on
send button on the chat screen. after click, the message is
sended to receiver side.

seeFriendsOnTheMap(params): this function
automatically works when user go to the map activity and
it also updates the locations of the friends periodically.
showNearFriends(params): this function works with
seeFriendsOnTheMap and takes action when user choose a
radius for seeing near friends. after choose this function
shows the friends who are inside the radius only.

seeEventsOnTheMap(params): this function automatically

UserActions

works when user wants to see the events. this function also
updates the state of the events.
getEventsWithInRadius(params): this function works with
seeEventsOnTheMap and takes action when user choose a
radius for events. After choose, this function shows the
events who are inside the radius.
participateEvent(params): when a user want to participate
a public or privileged event he/she can click on participate
after click the participants relation on the database is
updated.

seeEventInformation(params): when user clicks on an
event marker this function takes action and show the
information of event.

seeProfileOfUser(params): when a user clicks on another
profile of user this function takes action and show the
profile of user.

seePastEventsOfUser(params): this function takes action
when user clicks on past events of an user. this function
fetches information from database and show them to user.
CreateEvent(params): this function takes action when user
clicks on create event button. after the necessary
information for the event is given from user user clicks on
the create button and the event is recorded into the
database.

sendEventInvitationForPrivateEvent(params): when user
creates a private event the user can decide who can
participate the event. after deciding user can send
invitation to his/her friends. this function takes action after
clicking invite button. the the participants relation on the
database 1s updated with this function
requestFriendInvitationOfPrivateEvent(paramas): this
function takes action after clicking on accept or reject
button. when user gets invitation from his/her friends the
user can click on accept or reject button. after clicking
button the database is updated with respect to decision.

5.PLANNING

5.1 TEAM STRUCTURE

We meet our advisor Dr. Cevat Sener and assistant Serdar Cift¢i once a
week.We show our application to them and take advice from them what and
how will we do in our project.In addition to these, we meet and work on project
twice a week with all group members Members of our group and their focus’
are explained below:

Oguz Artiran - Developer, Server Side Development

Mustafa Murat Coskun - Developer, Server Side Development
Mehmet Gengol - Developer, Server Side Development

Ahmet Melih Gedikli - Developer, Server Side Development

5.2 ESTIMATED SCHEDULE

At the end of this semester, we are planning to finish a prototype of
application.With this prototype, user can register into system, add a friend, chat
with friend and see location of friend simultaneously.Also, user can see
locations of all friends, create private events and see private events that his/her
friends create.

At the end of this academic year, we are planning to finish the application.Much
more developed interface will be added to the application. After that, we will put
our application to Google Play Store.In this end-product, user can also create
public event and see public events.In addition to these, privileged users can
create privileged events and users of application see these privileged
events.Finally, we will work on advertisement techniques for marketing our
product.

5.3 PROCESS MODEL

We will apply agile model for our location-based NERS application because our
software is developed in incremental, rapid cycles.This is why, system can
respond quickly to changing requirements.Since agile model is based on
iterative approach, each iteration involves planning, requirement analysis,
design, implementation and testing.Each iteration takes 4 weeks.After we
successfully build prototype of our application, our project’s development will
be continued according to agile model in the second semester.

Agile Development Process

Development follows a Value is achieved|
y fasteras releases
ve at'the customer:
ore frequently:

continuous improvement
cycle, exposing flaws faster
and reducing waste

Release

Advantage:
« Shorter development cycles
* Wider market windows

« Early customer feedback
« Continuous improvement

6. CONCLUSION

This Software Requirements Specification Document(SRS) is a guideline to
understand the project for both customers and developers.The customer or
developer who read this document can have reach details of project.Interfaces of
project, detailed functional and non-functional requirements, data and
behavioral model of project are stated in this document.This document will be
useful while designing and developing the project.

