Software Requirements Specification

Prepared by Default

for the project Suizgeg
(Turkish Text Summarizer with Deep Learning)
Dr. Aysenur Birtlrk - Supervisor

Itir Onal - Project Assistant

Team Members
Abdullah Goktug Mert - 1881390
Baran Baris Kivilcim - 1881325
Enes Ugur Sekerci - 1942689
Yagiz Arkayin - 1880988

METU - Department of Computer Engineering
CENG 491 Senior Design Project |
Fall 2015-2016



1. Introduction

1.1 Problem Definition

1.2 System Overview

1.3 Definitions, Acronyms, and Abbreviations

1.4 Assumptions and Dependencies

2. Overall Description

2.1 Product Functions

2.1.1 Use-Case Model Survey

2.1.2 Actor Survey

2.2 Interfaces

2.2.1 User Interfaces

2.2.2 Hardware Interfaces

2.2.3 Software Interfaces

2.2.4 Communications Interfaces

2.3 Constraints

S leo 10 10100 g 100 1 1 e oo o o 1IN I

3. Specific Requirements 10
3.1 Functional Requirements 10
3.1.1 Text Summarizer Requirements 10
3.1.2 Summarize Web Page Requirements 10
3.1.3 Summarize File Requirements 10
3.1.4 Summary Setting Requirements 10
3.1.5 Train System Requirements 11
3.2 Non-Functional Requirements 11
3.2.1 Usability 11
3.2.2 Reliability 11
3.2.3 Performance 11
3.2.4 Supportability 12
4 Data Model and Description 12
4.1 Components 12
4.1.1 Text Parser 12
4.1.2 Feature Vector Creator 13
4.1.3 Autoencoder 13
4.1.4 Classifier 13
4.2 Classes 14
4.2.1 Text Class 14
4.2.2 Paragraph Class 14
4.2.3 Sentence Class 15
4.2.4 Word Class 15
5 References 15




1. Introduction

This document contains the system requirements for Stizge¢ Project. It is prepared by
the team Default.

This specification document includes descriptions of the functions and the
specifications of the project Slizgec.

In this section(Section 1), a review of the entire document is provided. The reader
would get familiarized with the contents before the further details are described.

1.1 Problem Definition

People need to learn much from texts. But they tend to want to spend less time while
doing this. We aim to solve this problem by supplying them the summaries of the text from
which they want to gain information. Our goals are that

e These summaries will be as important as possible in the aspect of the texts’
intention

e The user will be eligible to select summary length

e Supplying the user a smooth and clear interface

e Configuring a fast replying server system

1.2 System Overview

The product is mainly a text summarizing Google Chrome extension using Deep
Learning concepts. The main purpose is to provide reliable summaries of web pages or
uploaded files depends on the user’s choice. The unnecessary sentences will be discarded to
obtain the most important sentences.

The product includes the following components:

- Text Parser: It will divide the texts into paragraphs, sentences and words.

- Feature Vector Creator: This component will calculate and get the feature

representations of sentences.

- Autoencoder: The root part of the Deep Learning. Autoencoder offers a compressed

representation of a given sentence.

- Classifier: The classifier determines if a sentence is a summary sentence or not.

An explanation in detail is in the section 4.1.

1.3 Definitions, Acronyms, and Abbreviations

The document contains words and abbreviations related to computer science. The
terms and abbreviations are the following ones:

Server: A program that awaits and fulfills requests from client programs in the same or

other computers.
Deep Learning: A machine learning method that stimulates the neural network in

human brain.




C: A high level general purpose programming language.

Java: An object oriented programming languages that compose some of the tools we
use in this project.

Python: One of the most commonly used programming languages.

Matlab: An environment and its embedded programming language mostly used for
mathematical calculations or machine learning purposes.

Autoencoder: The core part of the neural network system that is used in deep learning.

Classifier: An algorithm used in Statistics and Machine Learning areas to divide the
data in two or more classes.

Word2Vec: A matrix representation of words and their meaning similarities.

Kernel: The lowest level of easily replaceable software that interfaces with the
hardware in your computer.

IEEE: Institute of Electrical and Electronics Engineers

Zemberek: A Java NLP API for Turkish language developed by TUBITAK.

TRNLTK: A Python NLP API for Turkish language.

NLP: Natural Language Processing

API: Application Program Interface

Tokenizer: A component that breaks up a sequence of string into pieces such as
words, phrases, symbols and other elements called tokens.

1.4 Assumptions and Dependencies

e The server must support Linux Kernel
e Our methodology of combining two probabilities (explained in detail in the following
sections) is not desirable, one of these algorithms serving probability can be discarded.

e The designed algorithm is for Turkish language and the text the application parses
must be written in this language.

e The interface of resulting system will be easy to use and accessible without a time or

location constraint.

The user must have Google Chrome as Web Browser.

The application requires a stable network connection.

The user must have a google account to install and use the extension.

If one of component does not work on Linux the programming language of it can be

replaced with another one.

2. Overall Description

This section is about the requirements, constraints and the interfaces included in the
project. A map of functions are also supplied.

The document follows the IEEE standards, yet some of the sections are discarded as
they are not compatible for this project.



2.1 Product Functions

Major functions of the product and brief descriptions of these functions can be found in
this section. Also detailed diagrams and descriptions can be found in subsections of this
section.

ID Function Description

1 Summarize Web Page | Getting summary of a webpage

2 Summarize File Getting summary with uploading a file

3 Summary Setting Setting the length of the summary

4 Train System Training the system’s machine learning part for better result

2.1.1 Use-Case Model Survey

This section includes use case diagrams and their detailed descriptions of the
functions that mentioned in section 2.1.

e Summarize Web Page

(,\ ///\

b T

Summarize Web Page

User

Figure-1: Summarize Web Page Use Case Diagram



Use Case ID

1

Use Case Summarize Web Page

Description Getting summary of a webpage

Actor User

Trigger User clicks “Web Sayfasini Ozetle” button in the extension pop-up.

Primary Scenario

- User clicks “Web Sayfasini Ozetle” button.

- System takes the web page and sends it to the cloud server.

- Web page is parsed, and the summarization algorithm takes its
body part as input.

- The algorithm gives summary sentences as output.

- Summary sentences are sent to the user’s browser page.

Exceptional Scenario

None

e Summarize File

O

File

Summarize File

User

Figure-2: Summarize File Use Case Diagram




Use Case ID

2

Use Case Summarize File

Description Getting summary with uploading a file

Actor User

Trigger User clicks “Dosyayi Ozetle” button in the extension pop-up.

Primary Scenario

- User clicks “Dosyayi Ozetle” button.

- System checks if the file is compatible.

- System takes the file and sends it to the cloud server.
[Exception: File is not compatible]

- The summarization algorithm takes the file as input.

- The algorithm gives summary sentences as output.

- Summary sentences are sent to the user.

Exceptional Scenario

- Error message is displayed.
- System wants another file from user.

e Summary Setting

O,

-

N

///\

User

Summary Setting

Figure-3: Summary Setting Use Case Diagram




Use Case ID

3

Use Case Summary Setting

Description Setting the length of the summary

Actor User

Trigger User clicks “Ayarlar(Gear Logo)” button in the extension pop-up.

Primary Scenario

- User clicks “Ayarlar(Gear Logo)” button in the extension pop-up.
- User selects one through options.

Exceptional Scenario

None

e Train System

"

_

e

///\

Train System

Admin
Figure-4: Train System Use Case Diagram
Use Case ID 4
Use Case Train System
Description Training the system’s machine learning part for better result
Actor Admin
Trigger Admin enters the system.

Primary Scenario

- Admin enters the system.
- Trains Autoencoder and classifier with new datas.

Exceptional Scenario

None




2.1.2 Actor Survey

e User: The user sends a request for the text to be summarized.
e Admin: Admin manages the website and configure a system to send responds to user
requests. His/Her another role is to maintain the algorithm and the server.

2.2 Interfaces

2.2.1 User Interfaces

The user interfaces will be an icon in the browser. While using the browser, user’s click
will trigger a panel containing 3 buttons. With using these buttons user will decide if the text to
be summarized from the current website or a text file from his/her hard drive.

The settings button will be used for determining the length of the sentence.

The prototype interface is the following:

w ‘ suzgec
Web Dosya
Sayfasini Ozetle
Ozetle

Figure-5: Prototype Interface of Browser Extension

After the selection of the text to be summarized it will be sent to the server and
resulting package will be the summary of the text. The interface of the printed summary will
be similar to the following image in the browser.



Figure-6: Prototype Interface of Summary

2.2.2 Hardware Interfaces

Not applicable.

2.2.3 Software Interfaces

In this system, there will be two APIs: TRNLTK and Zemberek NLP API.

TRNLTK will be used for tokenization and parsing texts to paragraphs, sentences and
words. Itis an NLP API.

Zemberek NLP API will also be used as mentioned. It will be used for getting words’
roots, positions in sentence, stems and suffixes.

Both APIs are open source and specialized for Turkish language.

2.2.4 Communications Interfaces

The only communication is between the extension and the server. JQuery-AJAX will be
used to send queries and receive ones. HTTP will be used as the protocol.



2.3 Constraints

The browser extension must be implemented with Javascript.

The components of the system must communicate well with each others.
All 4 members will work for the project with no option to outsource.

The server must run without a time constraint.

The team members will be eager to learn deep learning concept.

3. Specific Requirements

3.1 Functional Requirements

As mentioned at section 2.1.1, these requirements are categorized by use cases. For
any specific use case, there are specific requirements which are detailed below.

3.1.1 Text Summarizer Requirements

e The system should provide text parser functions which can take the whole text and
separate into sentences, paragraphs and words.

e The system should provide text-to-feature function which can take the necessary part
and obtain a feature vector.

e The system should provide a well-trained Autoencoder to generate better inputs for
classifier.

e The system needs a classifier which is well-trained to select summary sentences.

e The system should provide a sentence modifier to beautify and polish output text while
changing some words with their synonyms etc.

3.1.2 Summarize Web Page Requirements

e The system should provide a “Web Sayfasini Ozetle” button with complete
functionality. When clicked on this button, browser extension send the html of the
current web page to the server.

e A function which detect body part and select text. This function needs to extract
unnecessary text from html.

e The system should provide communication between server and client with necessary
network functions such send and receive.

3.1.3 Summarize File Requirements

e The system should provide a “Dosyayi Ozetle” button with complete functionality. After
user selected target file, the user presses the “Dosyayi Ozetle” button and web page
application send the file to the server.

e A set of functions provide the reading from file depends on file extension.

e The system should provide communication between server and client with necessary
network functions such send file and receive file.

3.1.4 Summary Setting Requirements

e The system should take parameters such as summary length from user before
summarizing.

10



3.1.5 Train System Requirements

e The system should provide login screen for admin.
e The system should provide taking new data from admin to train Autoencoders or
classifiers to improve reliability.

3.2 Non-Functional Requirements
3.2.1 Usability

The system should be easy to use. The user should reach the summarized text with
one button press if possible. Because one of the software’s features is timesaving.

The system also should be user friendly for admins because anyone can be admin
instead of programmers. Training the Autoencoders and classifiers are used too many times,
so it is better to make it easy.

3.2.2 Reliability

This software will be developed with machine learning, feature engineering and deep
learning techniques. So, in this step there is no certain reliable percentage that is measurable.

Also, user provided data will be used to compare with result and measure reliability.
With recent machine learning techniques, user gained data should be enough for reliability if
enough data is obtained.

The maintenance period should not be a matter because the reliable version is always
run on the server which allow users to access summarization. When admins want to update, it
take long as upload and update time of executable on server. The users can be reach and
use program at any time, so maintenance should not be a big issue.

3.2.3 Performance

Calculation time and response time should be as little as possible, because one of the
software’s features is timesaving. Whole cycle of summarizing a pagef/file should not be more
than 30 seconds in order to 3 pages long document.

The capacity of servers should be as high as possible. Calculation and response times
are very low, and this comes with that there can be so many sessions at the same times. The
software only used in Turkey, than do not need to consider global sessions.

1 minute degradation of response time should be acceptable. The certain session limit

also acceptable at early stages of development. It can be confirmed to user with “servers are
not ready at this time” message.

11



3.2.4 Supportability

The system should require C, Java, Python and Matlab knowledge to maintenance. If
any problem acquire in server side and deep learning methods, it requires code knowledge
and deep learning background to solve. Client side problems should be fixed with an update
and it also require code knowledge and network knowledge.

4 Data Model and Description

This section includes components and data objects of the system. Also a component
diagram, a class diagram, and descriptions of components and classes can be found in this

section.

4.1 Components

Our system will consist of 4 main components: Text parser, feature vector creator,
Autoencoder and classifier.

E Text Summarizer

Feature Vector Creator

Zemberek NLP _____{.,) Neural Network
Word2Vec Sentence x Features Matrix

AutoEncoder

Compressed Feature Vectors

Classifier

- O———0

Text Parser

TRNLTK Tekenizer

1:9 xt Text

Figure-7: Component Diagram of The System

4.1.1 Text Parser

In order to get sentence features, texts must be parsed into paragraphs and
sentences. With the help of TRNLTK Tokenizer - this tool might be changed in the future
provided that we find a better Turkish parser - we are going to parse the texts and send them
to our feature vector creator.

12



4.1.2 Feature Vector Creator

Since we cannot simply give the sentences as an input to the Autoencoder, we have to
create a proper sentence representation first. To do that, we are going to create a vector from
all sentences’ features , e.g and give it as an input to the Autoencoder. Feature vector
creator is going to take each sentence as input and give their feature values as a vector
output.

4.1.3 Autoencoder

Autoencoder is used in order to get a better representation and give it to the classifier.
Autoencoder can be thought as the cells in our neural network and it builds the core of the
deep learning. After training the Autoencoder, it will give compressed and better feature
values for each sentence. With these representations, the classifier and the result -i.e
summary- sentences will be more reliable.

This component is also trained with the inputs obtained from the sentences.

4.1.4 Classifier

Classifier is the last component of our system. It determines whether a sentence is a
summary sentence or not.

Classifier uses the logistic regression method for classifying. The regression simply
puts a line between the two classes which are the summary sentences and not summary
sentences.

Classifier is going to be trained by us with the data we obtained from volunteers. After
training with enough data sets, it will be ready to decide if a sentence is important or not.

13



4.2 Classes

There are 4 main classes in our project: Text, paragraph, sentence and word. Each of

their fields and methods are going to be used in order to calculate the sentence features.

Text

+itle
+numOfParagraphs: int

Paragraph

; +paragraphs]] +numOfSentencesinParagraph: int
+numOfSentences: int - = +rankOfParagrapginText: int
+parseToParagraphs() +parseParagraphToSentences()
+parseToSentences()
+getTitle()
+removeConjunctionsAndPrepositions()

+sentences(] +sentencesOfParagraph(]
Sentence
+numOfWordsInSentence: int
Word +features: float[*]
+parseSentenceToWords()
*root +iindSimilarityBtw2Sentences(s2: Sentence)
L +positioninText()
*suffixes +positioninParagraph()
+ype < +sentencelength()
+getRoot() +words{] +findCentrality()
+getStems() +getMumericalData()
+getType() +getPositiveWords()
+similarityOf2Waords(w2: Word) +gﬁtNi%atw§a‘ut“_JﬂrdED
+checkQuotations
+checkEndingMarkDot()
+indSimilantyBtwTitle()
+posTagger()

Figure-8: Class Diagram of The System

4.2.1 Text Class

Text class is the most complex class of the system. It has paragraphs, sentences and
words. For dividing text to these parts, text class should have parser methods. Also there are

number of sentences and number of paragraphs attribute in this class. These attributes are

necessary for calculating sentence features.

4.2.2 Paragraph Class

Paragraph class is intermediary class of the system. In paragraph object, some
necessary calculations are made for sentence features such as number of sentence in

paragraph and rank of paragraph in text. It also has own parser to divide the paragraph in

sentences.

14



4.2.3 Sentence Class

Sentence class is the most important class of the system. Sentence object has
methods to calculate feature values of itself with the information it takes from text, paragraph
and word classes. It has a float list called “features”. “features” list has feature values of the
sentence. The system combines “features” lists of the sentence objects of the text, and
makes a features matrix with them. Autoencoder and Classifier components -mentioned in
section 4.1- uses this features matrix. Sentence class also has own parser to divide the
sentence in words.

4.2.4 Word Class

Word class is the most basic class of the system. Using NLP APIs, we can get word’s
root, stem and suffix parts, and type of the word such as verb or noun. Also using Word2Vec
API, the cosine distance between two words can be calculated. These attributes are used for
calculating sentence’s feature values.

About this template

This template was adapted by Emre Akbas from two sources: the IEEE 830 [1] and the
“"Modern SRS package” [2].

5 References

[1] IEEE Guide for Software Requirements Specifications," in IEEE Std 830-1984 , vol., no.,
pp.1-26, Feb. 10 1984, doi: 10.1109/IEEESTD.1984.119205,
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=278253&isnumber=6883

[2] Appendix C of Don Widrig, Dean Leffingwell, “Managing Software Requirements: A Unified
Approach,” Addison-Wesley Professional, Release Date: October 1999, ISBN: 0201615932.

15


http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=278253&isnumber=6883
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=278253&isnumber=6883

