

MIDDLE EAST TECHNICAL UNIVERSITY

ENGINEERING FACULTY

DEPARTMENT OF COMPUTER ENGINEERING

 SOFTWARE REQUIREMENTS SPECIFICATIONS

GROUP MALLORN

Merve Bozo Yaşar Berk Arı

Sertaç Kağan Aydın Mustafa Orkun Acar

Team Leader: Itır Önal

Supervisor : Asst.Prof.Dr. Pınar Karagöz

 SOFTWARE REQUIREMENTS SPECIFICATIONS

TABLE OF CONTENTS

TABLE OF FIGURES .. 2

TABLE OF FIGURES .. 3

TABLE OF SCREENSHOTS ... 4

1. Introduction .. 5

1.1 Problem Definition .. 5

1.2 System Overview ... 5

1.3 Definitions, acronyms, and abbreviations ... 7

1.4 Assumptions and Dependencies ... 7

2. Overall description .. 8

2.1 Product functions ... 8

2.1.1 Use-Case Model Survey ... 8

2.1.2 Actor survey... 30

2.2 Interfaces .. 30

2.2.1 User Interfaces .. 30

2.2.2 Hardware Interfaces .. 33

2.2.3 Software Interfaces ... 33

2.2.4 Communications Interfaces ... 34

2.3 Constraints .. 34

2.4 Assumptions and Dependencies ... 34

3. Specific requirements ... 35

3.1 Functional Requirements .. 35

3.1.1 Functional requirement 1 – Login ... 35

3.1.2 Functional requirement 2 – Connect Database ... 35

3.1.3 Functional requirement 3 - Detect anomalies ... 35

3.1.4 Functional requirement 4 - Correct anomalies ... 35

3.1.5 Functional requirement 5 – Change settings .. 36

3.1.6 Functional requirement 6 – Complete Selected Column .. 36

3.1.7 Functional requirement 7 – Write results to DB ... 36

3.1.8 Functional requirement 8 - Create Task .. 36

3.1.9 Functional requirement 9 – Optimize a feature set of selected column(s) ... 36

3.1.10 Functional requirement 10 – EXPORT Model .. 36

3.1.11 Functional requirement 11 – IMPORT Model ... 36

3.1.12 Functional requirement 12 - Select column(s) for the table ... 37

3.1.13 Functional requirement 13 – Set Periodic Job .. 37

 SOFTWARE REQUIREMENTS SPECIFICATIONS

3.1.14 Functional requirement 14 – View Activities .. 37

3.1.15 Functional requirement 15 - View Databases ... 37

3.1.16 Functional requirement 16 – VIEW Models .. 37

3.1.17 Functional requirement 17 – VIEW Reports .. 37

3.1.18 Functional requirement 18 – Visualise Tlable ... 38

3.1.19 Functional requirement 19 – Log out .. 38

3.2 Nonfunctional Requirements.. 38

3.2.1 Usability ... 38

3.2.2 Reliability ... 38

3.2.3 Performance .. 38

3.2.4 Supportability .. 39

3.2.5 Security .. 39

4. DATA Model and Description .. 40

4.1 Data Object ... 40

4.1.2 Data dictionary .. 42

4.2 Entity Relationship Model .. 44

4.2.1 Member Entity... 45

4.2.2 Member Login Log Entity .. 45

4.2.3 Databases Entity .. 45

4.2.4 Tables Entity .. 45

4.2.5 Columns Entity .. 45

4.2.6 Statistics Entity .. 46

4.2.7 Notification Entity ... 46

4.2.8 User Notification Entity ... 46

5. References ... 47

TABLE OF FIGURES

Figure 1: Component Diagram .. 6

Figure 2: General Use Case Diagram ... 9

Figure 3: Login Use Case ... 11

Figure 4: Connect to Databases Use Case ... 12

Figure 5: Detect Anomaly Use Case .. 13

Figure 6: Correct Anomaly Use Case ... 14

Figure 7: Change Settings Use Case .. 15

Figure 8: Complete Columns Use Case.. 16

 SOFTWARE REQUIREMENTS SPECIFICATIONS

Figure 9: Write Results to DB Use Case ... 17

Figure 10: Create Task Use Case ... 18

Figure 11: Optimize Feature Set Use Case .. 19

Figure 12: Export Model Use Case .. 20

Figure 13: Import Model Use Case .. 21

Figure 14: Select Column Use Case ... 22

Figure 15: Set Periodic Job Use Case ... 23

Figure 16: View Activities Use Case ... 24

Figure 17: View Databases Use Case ... 25

Figure 18: View Models Use Case ... 26

Figure 19: View Reports Use Case ... 27

Figure 20: Visualize Table Use Case .. 28

Figure 21: Logout Use Case ... 29

Figure 22: Class Diagram of Vitriol .. 40

Figure 23: Entity Relationship Diagram ... 44

TABLE OF FIGURES

Table 1: Description of Definitions, Acronyms and Abbreviations ... 7

Table 2: Overview of the Use-Case ... 10

Table 3: Description of Login Use Case ... 11

Table 4: Description of Connect to Databases .. 12

Table 5: Description of Detect Anomaly Use Case .. 13

Table 6 Description of Correct Anomaly Use Case .. 14

Table 7: Description of Change Settings Use Case .. 15

Table 8: Description of Complete Columns Use Case ... 16

Table 9: Description of Create Task Use Case ... 18

Table 10: Description of Optimize Feature Set Use Case .. 19

Table 11: Description of Export Model ... 20

Table 12: Description of Import Model Use Case ... 21

Table 13: Description of Select Columns Use Case ... 22

Table 14: Description of Set Periodic Job Use Case .. 23

Table 15: Description of View Activities Use Case .. 24

Table 16: Description of View Databases Use Case .. 25

Table 17: Description of View Models Use Case ... 26

Table 18: Description of View Reports Use Case .. 27

 SOFTWARE REQUIREMENTS SPECIFICATIONS

Table 19: Description of Visualize Table Use Case .. 28

Table 20: Description of Logout Use Case ... 29

Table 21: Description of Actor Survey ... 30

Table 22: Description of the Data Model .. 43

Table 23: Description of the methods ... 43

TABLE OF SCREENSHOTS

Screenshot 1: Home Page of Vitriol .. 31

Screenshot 2: Login Page of Vitriol ... 31

Screenshot 3: Choose Column Page of Vitriol ... 32

Screenshot 4: Pie Chart of Results .. 32

Screenshot 5: Statistical Analyze of Results .. 33

 SOFTWARE REQUIREMENTS SPECIFICATIONS

1. INTRODUCTION

This Software Requirements Specification provides a complete description of all the functions and specifications

of the Vitriol project, which is a generic machine learning tool targeting any domain and any user. This document

includes purpose, features and the interfaces of the application. The intended audience of this document includes

the prospective developers of the system. The software system to be produced is a generic, automated machine

learning tool. The system mainly targeting software companies who lacks know how for big data. The system may

be used by any company from any domain with no expertise. Any user from any company that knows the basics

of computer usage will be able to use the system without any training.

During the preparation of the document, ISO-IEC-IEEE 29148-2011 is followed. External interfaces, functional

requirements, use case diagrams, sequential diagrams, ER diagram and class diagrams are organized in the

following sections.

1.1 PROBLEM DEFINITION

Big data is the one of the most trending topic in computer science nowadays, Moreover in modern world,

information is the most valuable currency. The job of a data scientist is mainly to retrieve information from existing

data. However it is a new topic and the sector lacks qualified scientist. Vitriol is aiming to solve that problem by

eliminating the human factor from the data science in long term.

Vitriol is the first and only generic, automated machine learning tool that enables its users to run certain machine

learning algorithms without any machine learning information. The system is developed in such a manner that,

any person with basic computer skills can use the system without any extra information or training.

1.2 SYSTEM OVERVIEW

The system consist of 2 servers, 1 web application, 2 database, 1 memcached server and 1 machine learning

machine. One of the servers is used for main application of the web service, the other one on the other hand, is

used for notification mechanism, which is implemented via web socket technology. Web application is

implemented mainly by html, JavaScript and css. The two databases are used for information storage. The first

one is for the web application and the second one is for the data of the users. Memcached server is used for

session storage. It is designed as a completely separate machine in order to commonize session objects between

servers in case of the probability of using more than one server to balance the load of the server. Machine

learning machine is the core of the system where all the algorithms and functionalities are applied.

 SOFTWARE REQUIREMENTS SPECIFICATIONS

Figure 1: Component Diagram

The figure above is the component diagram for Vitriol. It shows the interactions between the system user, Web

Interface, Main System Server, Database Server and the Computation Server. The main actions of the user are

creating a new task on the system and viewing the reports for the previously started tasks. The user interacts with

the system using the provided Web Interface. Web Interface is responsible for transmitting user requests to the

server and also displaying the results returned to the user. All the requests arriving to the server side pass through

the Load Balancer to minimize the response time and avoiding overloading a single system server. The main server

handles the requests sent by the user by starting the desired operation and sending the results and obtained model

to the user after it is completed. Main server basically communicates (sends the information about the operation)

with the computation server to execute the operation. It also can send requests to the Database Server for some

tasks such as authentication etc. Computation server is the fundamental hardware in which the algorithms are

operated. It handles the requests by the main system server and generates models or performs other types of

computations. To achieve this, it requests the required data from the database server. Upon completion, the

obtained models and results are returned to the main server. Lastly, the database server is responsible for handling

data requests by providing the required set of data to the Main Server or Computation Server.

 SOFTWARE REQUIREMENTS SPECIFICATIONS

1.3 DEFINITIONS, ACRONYMS, AND ABBREVIATIONS

SRS Software requirements Specification

ML Machine Learning

Npm Node package manager

IEEE Institute of Electrical and Electronics Engineers

DBMS Database management system

ER Diagram Entity Relationship Diagram

Member User A user that registered to the system

MySQL An open source database management system

TCP/IP A communication protocol for the internet and
similar networks

Notification Instantaneous information that is shown to the
users

Pm2 Process management system for nodejs

DB Database

Table 1: Description of Definitions, Acronyms and Abbreviations

1.4 ASSUMPTIONS AND DEPENDENCIES

Both web servers are implemented assuming a Linux based operating system is running on the server machines

(Centos [6] or Linux is preferable.) And also designs are made in such a manner that, server machines have java,

scala, nodejs and spark installed in it already. If any of this assumptions will be changed, the design of the project

and content of this document shall be changed accordingly.

The development team may assume that the users of the system has sql databases(Postresql, MySQL, mssql,

oracle etc.) and have their data in a single table. In case of need of a join or limit operation, the user of the system

is assumed to provide the table in already joined or limited state.

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2. OVERALL DESCRIPTION

2.1 PRODUCT FUNCTIONS

The project Vitriol is a generic, automated machine learning tool that serve to any user with the data from any

domain. It is designed as an on cloud service, hence the major parts for the project are web server and machine

learning engine. The user that want to perform certain data operations on his/her data(such as anomaly

detection or feature derivation) connects to the system via web interface, introduce his/her database by the help

of the Ip (internet protocol) then choose what to do with the data(i.e. complete). That’s all.

After that web service creates necessary records in the database and send signal to the ml engine to work on

the data. As soon as the ml engine finishes the job, it inserts the necessary information to the notification table

in the database. When the data is inserted a trigger function works on the database which invokes a web

socket server, and web socket server pushes the notification in to the client side of the web system.

2.1.1 USE-CASE MODEL SURVEY

The system works for only one user (namely user) which is able to work every aspect of the project. In future

development it is being considered to have different type of users for different type of action, however it is out

of scope of this document. The use cases, and detailed explanations of the use cases are demonstrated below.

 SOFTWARE REQUIREMENTS SPECIFICATIONS

Figure 2: General Use Case Diagram

 SOFTWARE REQUIREMENTS SPECIFICATIONS

No Functionality Short Description

1 Login Logging into system with

membership and password

2 Connect to Database Connect a remote database

3 View Databases View all databases

4 Create Task Creation of a task for processing

the data

5 Select Column(s) from table Select specific columns for

starting process

6 Anomaly Detection Show irrelevant parts of the data

7 Anomaly Correction Correct irrelevant parts of table

8 Create Model for selected column Create a model on selected

columns for future use

9 Complete Selected Column Complete empty parts of selected

column

10 Optimize a feature set of selected

column(s)

Create new features using selected

column(s)

11 Import Model Import an external model

12 Export Model Export a model for future use

13 View Models View previously created models

14 View Reports View the detailed reports about

process

15 Visualize Table Visualize the distribution of data

points in a table

16 Set Periodic Job Set a specific job to work

periodically

17 View Activities Logs of previous activities

18 Change Settings Change user settings (password, e-

mail, username etc.)

19 Logout Logout from system

Table 2: Overview of the Use-Case

Vitriol system provides many functionalities as seen above. All of them requires user to be logged in, which is

also a use case for the user. Some of the cases include other cases also. For sake of simplicity each use case is

explained separately below.

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.1 LOGIN USE CASE FOR USER

Figure 3: Login Use Case

Use Case ID UC1

Use Case Name Login

Description This use case describe event in which a user login to

system with his/her username and password.

Actors User

Precondition -

Trigger The user tries to login to the system using the web

service providing login credentials.

Basic Flow 1- The user enters his/her username

2- The user enters his/her 8 digit password

3- Web service checks the database for password

confirmation via server

4- Web service displays a correct password message

Exception Flow If the entered password does not match with the

password in the database an error message is

displayed by web service.

Post Conditions -

Table 3: Description of Login Use Case

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.2 CONNECT TO DATABASE USE CASE FOR USER

Figure 4: Connect to Databases Use Case

Use Case ID UC2

Use Case Name Connect to Database

Description This use case describe event in which a user connect

to database with its credentials

Actors User

Precondition -

Trigger The user tries to connect a DB to his Vitriol account

by providing the DB credentials such as DB address

and password.

Basic Flow 1- The user enters the remote database Ip address

2- The user enters his/her database password

3- If the password is accepted by remote database,

database table names are shown

Exception Flow If the password is refused by remote database, an

error message is displayed by web service

Post Conditions -

Table 4: Description of Connect to Databases

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.3 DETECT ANOMALY USE CASE FOR USER

Figure 5: Detect Anomaly Use Case

User Case ID UC3

User Case Name Detect Anomaly

Description This use case describes the operation that user can

start a task to detect different kinds of anomalies

represented in the dataset.

Actors Member User

Precondition User has to login the system, connect to a database

and creates the task after selecting some columns.

Trigger User creates anomaly detection task using the

interface.
Basic Flow 1 - Anomaly detection module operates on the

selected columns.

2 - Results are shown on the reports page.

Exception Flow -

Post Conditions Data sets are analyzed and anomalies detected to be

shown.

Table 5: Description of Detect Anomaly Use Case

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.4 CORRECT ANOMALY USE CASE FOR USER

Figure 6: Correct Anomaly Use Case

User Case ID UC4

User Case Name Correct Anomaly

Description This use case describes the operation in which

inconsistent data points are cleared or updated.

Actors Member User

Precondition User has to login to the system, connect to a database

and creates the task after selecting the columns.

Trigger User creates anomaly correction task.

Basic Flow 1 - Anatoly correction module operates on the

selected columns.

2 - Datasets are updated in databases.

3 - Results are shown on the reports page.

Exception Flow -

Post Conditions Datasets are analyzed and anomalies detected to be

shown and datasets are updated according to

correction or deletion decisions.

Table 6 Description of Correct Anomaly Use Case

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.5 CHANGE SETTINGS USE CASE FOR USER

Figure 7: Change Settings Use Case

User Case ID UC5

User Case Name Change Settings

Description This use case describes that user can change

personal settings such as passwords, avatars, security

questions etc.

Actors Member User

Precondition User must be logged in to the system.

Trigger User clicks on the 'change settings' button.

Basic Flow 1-User selects the data that he/she wants to update.

2-User enters the new value.

3 - New values are checked according to some

expected range. If it is valid, database entry is

updated accordingly.

Exception Flow 1 - If the new entered value is not in the expected

range, an exception occurs and an error message are

shown to the user.

Post Conditions Updated user information in the database.

Table 7: Description of Change Settings Use Case

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.6 COMPLETE COLUMNS USE CASE FOR USER

Figure 8: Complete Columns Use Case

User Case ID UC6

User Case Name Complete Columns

Description This use case describes the operation of the

completion of missing and invalid entries in columns

of the databases.

Actors Member User

Precondition User must be logged in to the system and have at

least one connected database.

Trigger User starts the data completion task from the

interface.

Basic Flow 1 - User select the column that operation will be

applied on.

2 - Complete columns module works on the selected

column and completes the missing values.

3 - If the multiple columns are selected by the user,

the operation is performed on the selected columns

consecutively.

Exception Flow -

Post Conditions Updated datasets are shown to the user. A report is

generated about the task.

Table 8: Description of Complete Columns Use Case

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.7 WRITE RESULTS TO DB USE CASE FOR USER

Figure 9: Write Results to DB Use Case

User Case ID UC7

User Case Name Write Results to DB

Description This use case describes the operation of write the

obtained results after operations to the database of the

user

Actors Member User

Precondition User must be logged in to the system and have at

least one connected database.

User must create task and the execution of the task

should be completed.

Trigger User clicks on the ‘write to database’ button on the

web interface.

Basic Flow 1 – User clicks on the ‘write to database’ column on

the web interface.

2 – A connection between the web server and the

database of the user is established.

3 – Data is copied to the database of the user.

Exception Flow -

Post Conditions -

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.8 CREATE TASK USE CASE FOR USER

Figure 10: Create Task Use Case

User Case ID UC8

User Case Name Create Task

Description This use case describes the operation that allows the

user to specify the details of the desired task.

Actors Member User

Precondition User must be logged in to the system

Trigger User clicks on the create model button.

Basic Flow 1-The new window is shown to the user asking for

the details about the operation that will be created.

Exception Flow 1 - If the user didn’t provide columns of a table,

exception occurs and an error massage are shown to

the user.

Post Conditions New task added to the system job queue having user

specified type.

Table 9: Description of Create Task Use Case

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.9 OPTIMIZE FEATURE SET USE CASE FOR USER

Figure 11: Optimize Feature Set Use Case

User Case ID UC9

User Case Name Optimize Feature Set

Description This use case describes the operation that optimizes

the feature set.

Actors Member User

Precondition User must be logged in to the system and created the

related task.

Trigger User selects the 'optimize the feature set' operation in

task creation phase.

Basic Flow 1 - Related task is performed on the dataset provided

by the user.

2 - The result are shown on the report page.

Exception Flow -

Post Conditions Feature sets are optimized.

Table 10: Description of Optimize Feature Set Use Case

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.10 EXPORT MODEL USE CASE FOR USER

Figure 12: Export Model Use Case

User Case ID UC10

User Case Name Export Model

Description This use case describes the operation of creating xml

encoding of an existing model created by the system.

Actors Member User

Precondition User must be logged in the system.

Trigger User selects a model and clicks the 'export model'

button.

Basic Flow 1-Existing model encoded as xml file.

2-Encoded file is downloaded by the user.

Exception Flow -

Post Conditions Xml file created.

Table 11: Description of Export Model

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.11 IMPORT MODEL USE CASE FOR USER

Figure 13: Import Model Use Case

User Case ID UC11
User Case Name Import Model

Description This use case describes the operation of importing

XML encoded model and addition to the user's

models.

Actors Member User

Precondition User must be logged in to the system.

Trigger User selects a model and clicks the 'import model'

button.
Basic Flow 1 – User selects a model file to import.

2 – Selected file is checked for validity and if

successful, inserted into the user's models.

Exception Flow 1 – If the selected file for import is invalid, an error

message is shown to the user.

Post Conditions An external method is imported and added to the

user's models.

Table 12: Description of Import Model Use Case

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.12 SELECT COLUMN USE CASE FOR USER

Figure 14: Select Column Use Case

User Case ID UC12
User Case Name Select Columns
Description This use case describes an event in which a user

selects the columns that will be processed.
Actors User
Precondition The user has to login the system and connect to a

database.
Trigger The user clicks the “Select Columns” button.
Basic Flow 1 – The user selects the desired columns by clicking

on them on a table preview screen.

2 – Selection process ends when the user clicks “OK”

button.
Exception Flow -
Post Conditions Some columns are selected by the user for the

process.

Table 13: Description of Select Columns Use Case

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.13 SET PERIODIC JOB USE CASE FOR USER

Figure 15: Set Periodic Job Use Case

User Case ID UC13
User Case Name Set Periodic Job

Description This use case describes the operation of setting a job

to be run in the future, possibly periodically.

Actors Member User

Precondition The user must be logged in to the system.

Trigger User chooses the operation using the interface.

Basic Flow 1 – User chooses the operation by clicking the button

in 'Jobs' tab.

2 – User creates a periodic job by providing the job

(operations) and timing information and confirms by

clicking 'OK'.

Exception Flow 1 – If the user clicks 'OK' button without providing

an operation as s/he creates the periodic job, an error

message is displayed.

Post Conditions A periodic job to be run in a future time is added to

the job queue.

Table 14: Description of Set Periodic Job Use Case

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.14 VIEW ACTIVITIES USE CASE FOR USER

Figure 16: View Activities Use Case

User Case ID UC14
User Case Name View Activities

Description This use case describes the operation of viewing past

activities by that account.

Actors Member User

Precondition The must be logged in to the system.

Trigger User clicks on the 'View Activities ‘tab.

Basic Flow 1 - User chooses the action.

2 – Past activities are displayed. If there is no

activity, a message is displayed instead.

Exception Flow -

Post Conditions The past activities of the user is displayed.

Table 15: Description of View Activities Use Case

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.15 VIEW DATABASES USE CASE FOR USER

Figure 17: View Databases Use Case

User Case ID UC15
User Case Name View Databases

Description This use case describes the operation of viewing

databases connected to the system.

Actors Member User

Precondition The user must be logged in to the system.

Trigger User clicks on the 'View Databases’ tab.

Basic Flow 1 - User chooses the action.

2 – Connected databases are displayed. If there is no

databases, a message is displayed instead.

Exception Flow -

Post Conditions The connected databases are displayed.

Table 16: Description of View Databases Use Case

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.16 VIEW MODELS USE CASE FOR USER

Figure 18: View Models Use Case

User Case ID UC16
User Case Name View Models

Description This use case describes the operation of viewing

previously created models.

Actors Member User

Precondition The user must be logged in to the system.

Trigger User clicks on the 'View Models' tab.

Basic Flow 1 - User chooses the action.

2 – Models are displayed. If there is no models, a

message is displayed instead.

Exception Flow -

Post Conditions The models are shown.

Table 17: Description of View Models Use Case

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.17 VIEW REPORTS USE CASE FOR USER

Figure 19: View Reports Use Case

User Case ID UC17
User Case Name View Reports

Description This use case describes the operation of viewing

created reports about previous processing of the user.

Actors Member User

Precondition The user must be logged in to the system.

Trigger User clicks on the 'View Reports' tab.

Basic Flow 1 - User chooses the action.

2 – Reports about the past actions are displayed. If

there is no reports, a message is displayed instead.

Exception Flow -

Post Conditions The reports are shown.

Table 18: Description of View Reports Use Case

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.18 VISUALIZE USE CASE FOR USER

Figure 20: Visualize Table Use Case

User Case ID UC18
User Case Name Visualize Table

Description This use case describes the operation in which a

database table is visualized for better understanding.

Actors Member User

Precondition User must be logged in to the system. At least one

table must be connected to user's account.

Trigger User clicks on the 'Visualize table' button after

selecting a table.

Basic Flow 1 – User selects a table and chooses visualizing

operation with options of 2D and 3D visualization.

2 – The related algorithm produces the resulting

graph and it is shown to the user.

Exception Flow -

Post Conditions The desired visualization is obtained.

Table 19: Description of Visualize Table Use Case

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.1.19 LOGOUT USE CASE FOR USER

Figure 21: Logout Use Case

User Case ID UC19
User Case Name Logout
Description This use case describes an event in which a user logs

out from the system.
Actors User
Precondition User has to login the system
Trigger The user tries to log out from the system using log

out button.
Basic Flow 1 - User clicks the log out button

2 - Session is finished by the web service

Exception Flow -
Post Conditions The user is redirected to the login screen

Table 20: Description of Logout Use Case

 SOFTWARE REQUIREMENTS SPECIFICATIONS

2.1.2 ACTOR SURVEY

The vitriol system consists of only one actor type namely user or member user. The details of the actor can be seen

in the table below.

Actor Name Member User

Description Member user or shortly the user is anyone that

registers and get a password from Vitriol system. All

the functionalities of Vitriol can be used by member

user.

Table 21: Description of Actor Survey

2.2 INTERFACES

2.2.1 USER INTERFACE S

The user interface of the web application is comprehensive and easy to use. At the header part user is able to see

his/her notifications and manage the setting of his/her account. In the left-most part of the page there is a list of

operation that user can do. This operations are mainly the use cases that described in section 2.1.1. This two

sections are fixed in every page. At the middle, beside from these sections, there is a white board which shows a

little variations regarding of the operation that user want to do. For example if the user wants to connect database,

the left-most and the top section is the same but in the white board he/she sees a form to connect database. If he/she

wants to see the reports some charts is demonstrated instead.

The details of the user interface can be observed by looking at the figures below.

 SOFTWARE REQUIREMENTS SPECIFICATIONS

Screenshot 1: Home Page of Vitriol

Screenshot 2: Login Page of Vitriol

 SOFTWARE REQUIREMENTS SPECIFICATIONS

Screenshot 3: Choose Column Page of Vitriol

Screenshot 4: Pie Chart of Results

 SOFTWARE REQUIREMENTS SPECIFICATIONS

Screenshot 5: Statistical Analyze of Results

2.2.2 HARDWARE INTERFACES

Since it is an on cloud web service, the project requires a server machine (physical or virtual), which shall be

reliable. SATA and SAS disk bus standards will be adopted along with RAID technology so that, better

maintenance and reliability of the persistence storage can be achieved. And also CPU and Memory of the server

shall be as high as possible (8 GB RAM, Intel Xeon e5-2699 v3 @ 2.30 GHz at least) to achieve %99.99 availability

constraint.

If more than one server is going to be used behind a load balancer, than another machine for in-memory caching

memory would also be beneficial in order to commonize session objects.

2.2.3 SOFTWARE INTERFACES

 The server machine shall have a Linux environment namely Ubuntu or CentOs version at least 14.04 and

6.7 accordingly

 Java Runtime Environment (Java RE), version 1.6 or later, is required for ml engine, which is used on the

server side of the product.

 Apache Spark version 1.6 is required by the ml engine

 Nodejs environment and it package manager npm shall be installed on the server.

 SOFTWARE REQUIREMENTS SPECIFICATIONS

 Memcached is used for session storage. Hence it must either be used as a distinct machine or the server

that uses memcached shall have memcached installed on it.

 Postgresql version 9 or higher is used for the database server.

 Apache tomcat will be used for a java bridge server for the communication of web server and ml engine.

2.2.4 COMMUNICATIONS INTERFACES

The server and Database Management System communicate using the TCP/IP protocol. And also the notification

mechanism is designed by using web socket protocol.

2.3 CONSTRAINTS

The one and only constraint for the design is to not to work on data on the database of the user. Since every

query that is being worked on the database results in a cost, the project have to replicate the data to its own

database to work on it.

2.4 ASSUMPTIONS AND DEPENDENCIES

 The development team may assume that, the data that is being the object of the project will be provided

as a single sql table. If any join or limitation will be performed on the data, that is assumed to be done

by the end user.

 Another assumption is that the database of the user is open to remote access.

 The last assumption can be made by the developers is that the use will connect a sql database, which

fulfills the basic requirements of sql tables.

 SOFTWARE REQUIREMENTS SPECIFICATIONS

3. SPECIFIC REQUIREMENTS

In this section, all of the software requirements specified in details so that designers can design the system and

testers can test to the system to satisfy these requirements.

3.1 FUNCTIONAL REQUIREMENTS

3.1.1 FUNCTIONAL REQUIREMENT 1 – LOGIN

The user shall be log into system by a username and password. Password should be kept in the database in an

encrypted version for security concerns. The login mechanism shall work in cooperate with session mechanism.

Whenever a user logs in a session shall be created and shall be kept in in-cache memory and browser cookie. If

another login occurs for the same user name the previous session shall be dropped. And also if the user that logs

into system shows no action for 15 minutes the session again shall be dropped. The login information shall be

logged into the database for the sake of user reports.

3.1.2 FUNCTIONAL REQUIREMENT 2 – CONNECT DATABASE

The user shall be able to connect his/her database just by providing the credentials such as Ip address, port number

username and password of the database. No other information shall be asked to the user.

3.1.3 FUNCTIONAL REQUIREMENT 3 - DETECT ANOMALIES

The user shall be able to detect anomalies of the data from the database that he/she connected. This is the process

of viewing irrelevant parts of the data.

3.1.4 FUNCTIONAL REQUIREMENT 4 - CORRECT ANOMALIES

The user shall be able to correct the anomalies that he/she detects. This process includes the functional

requirement 3.

 SOFTWARE REQUIREMENTS SPECIFICATIONS

3.1.5 FUNCTIONAL REQUIREMENT 5 – CHANGE SETTINGS

The user shall be able to change his/her setting such as password or username.

3.1.6 FUNCTIONAL REQUIREMENT 6 – COMPLETE SELECTED COLUMN

The user shall be able to complete the data in the selected column if it has missing parts. This completion shall be

done by at least %60 accuracy. This process includes functional requirement 12.

3.1.7 FUNCTIONAL REQUIREMENT 7 – WRITE RESULTS TO DB

The user shall be able to write results of his/her tasks to database.

3.1.8 FUNCTIONAL REQUIREMENT 8 - CREATE TASK

The user shall be able to create task in order to process the data. The created task shall be remembered by the

system.

3.1.9 FUNCTIONAL REQUIREMENT 9 – OPTIMIZE A FEATURE SET OF SELECTED COLUMN(S)

The user shall be able to optimize a feature set for the selected column or columns.

3.1.10 FUNCTIONAL REQUIREMENT 10 – EXPORT MODEL

The user shall be able to export the ml model that is generated for his/her data in order to use it in the system in

the future.

3.1.11 FUNCTIONAL REQUIREMENT 11 – IMPORT MODEL

The user shall be able to import ml model that is exported before or created by himself/herself.

 SOFTWARE REQUIREMENTS SPECIFICATIONS

3.1.12 FUNCTIONAL REQUIREMENT 12 - SELECT COLUMN(S) FOR THE TABLE

The user shall be able to select column(s) from the table that is inside the database that he/she connected. The

columns shall be listed to the user for him/her to choose.

3.1.13 FUNCTIONAL REQUIREMENT 13 – SET PERIODIC JOB

The user shall be able to set periodic jobs for any task that he/she wants. The periodicity of the task may be

weekly, two times a month, monthly and never.

3.1.14 FUNCTIONAL REQUIREMENT 14 – VIEW ACTIVITIES

The user shall be able to see previous activities taken by himself/herself in order to keep track on the process of

his/her data.

3.1.15 FUNCTIONAL REQUIREMENT 15 - VIEW DATABASES

The user shall be able to see his/her databases that are connected before. The databases shall be listed for the user

to choose.

3.1.16 FUNCTIONAL REQUIREMENT 16 – VIEW MODELS

The user shall be able to see the ml models that are created before for his/her data. In other words system shall

remember the models that is created before.

3.1.17 FUNCTIONAL REQUIREMENT 17 – VIEW REPORTS

The user shall be able to view reports about his/her process.

 SOFTWARE REQUIREMENTS SPECIFICATIONS

3.1.18 FUNCTIONAL REQUIREMENT 18 – VISUALISE TLABLE

The user shall be able to see the distribution of the data points in his/her table. This visualization shall be done

by using dot plots.

3.1.19 FUNCTIONAL REQUIREMENT 19 – LOG OUT

The user shall be able to log out and kill his/her session whenever he/she wants.

3.2 NONFUNCTIONAL REQUIREMENTS

3.2.1 USABILITY

Vitriol is a handy tool that requires no extra training. It is targeting mainly software companies but this is not a

requirement. Any user that has only basic computer knowledge will be able to use the system easily.

3.2.2 RELIABILITY

If any component of the system does not response to user, the system shall display informative message about the

error. Since the ml algorithms takes huge amount of time the front end side shall not be locked during these

processes. There shall be a backup system in order not to lose information of users of the system. The system

should be available %90 of time during a year. Moreover there should be a beta environment for future

development in order not to cause an unforeseen error. The system shall be implemented such a way that if there

will be transportation in the system (such as change the database server or add a new server to the system), the

maintainability shall not be broken.

3.2.3 PERFORMANCE

The average response time of the system shall be 200 milliseconds or less. Moreover it shall never be more than 2

second even in extreme cases. It shall be able to work under the load of 1024 concurrent users, and transaction per

second shall not be less than 20. All the sql queries shall be written regarding this constraint.

 SOFTWARE REQUIREMENTS SPECIFICATIONS

If the system degraded it shall still run the web service. It shall lock the ml engine for a short period of time and

show the users that want to run certain tasks, an informative message. All other parts of the system such as

demonstrating reports or changing settings shall be available for all users.

The resource utilization shall be monitored by system admins frequently. An infrastructure monitoring tool shall

be used for that purpose. Nagios [5] is recommended but not mandatory. The monitoring tool shall send e mail to

the admins of the system when the storage or memory is full, critical (more than %75 load), OK state(less than

%75 load). It shall also send e-mail on CPU is in critical state. This monitoring tool shall be installed on main web

server, notification server, and databases servers. The in-cache memory system does not need to be monitored

since it has its own utilization management.

3.2.4 SUPPORTABILITY

The system shall be designed in such a manner that supportability is considered. To run the backend side a process

management tool shall be used. Since the server side coded in nodejs pm2 (Advanced, production process manager

for Node.js) is highly recommended.

Every component of the system shall keep meaningful of that show the state of the system. Log file shall include

date and time and system log files and error log files shall be separated if possible for the sake of simplicity in

maintainability.

3.2.5 SECURITY

The system shall be designed concerning security issues. The password of the user shall not be seen on the user

screen. (It should be demonstrated as dots instead). The password of the users shall be kept encrypted.

 SOFTWARE REQUIREMENTS SPECIFICATIONS

4. DATA MODEL AND DESCRIPTION

4.1 DATA OBJECT

Since the website is designed in asynchronous pattern and does not fit in basic object oriented design concepts,

any class diagram or data dictionary will not be provided in this document. For the ML engine related diagrams

and explanations are provided in the coming sections.

Figure 22: Class Diagram of Vitriol

 SOFTWARE REQUIREMENTS SPECIFICATIONS

4.1.1.1 USER

This class represents the member user entity of the system. It has the following attributes: username, password,

database, report, model, job, activity. Username and password attributes are primitive data types whereas the

remaining attributes are instances of some other classes. It stores the information about the user and his data on

the system. This class has related methods to update its fields.

4.1.1.2 DATABASE

This class has the abilities to perform database operations such as connecting, retrieving data etc. It is capable of

executing SQL queries on the connected database. It has the attributes of ip, port, dbname, password and username

to connect to a database.

4.1.1.3 OPERATION

This class consists of Vitriol’s core machine learning and data mining functionalities such as optimizing a feature

set (a database table), detection & correction of anomalies, completing tables, visualizing databases for better

understanding of the dataset. These methods are utilized for generating models and eventually user defined jobs

to perform the desired task.

4.1.1.4 MODEL

This class represents a main construction of Vitriol, namely models. A model consists of multiple sequential

operations defining a machine learning model design. This class has the attribute of an operation list, which is

operations.

4.1.1.5 JOB

This class represents user defined jobs. Every task which the user wants to accomplish are stored and processed

as jobs in the system. A user task is translated into a model and after that, a job is defined holding that model and

also other information about the task including userID and database as a job. This class has the following attributes:

model, time, database, tableName, userID and jobID. jobID is used to identify a unique job.

 SOFTWARE REQUIREMENTS SPECIFICATIONS

4.1.1.6 REPORT

Report class represents the after operation reports and their generation. The class has the following attributes:

userID, data, reportPath. A call to the generateReport(Job job) generates a report in an address in the memory and

stores in the object’s related field.

4.1.1.7 ACTIVITY

This class represents logs of users’ past activities. It has the attributes of userID, time and activitydetail to store a

user’s a specific activity on the system for future checks.

4.1.2 DATA DICTIONARY

Attribute Definition

username(User) It is a string defining the unique username for user
to log into the system.

password(User) It is a string defining the user password for user to
log into the system

database It is the database of the user. For detailed
information please refer to section 4.1.1.2

model It is the model object of the user. For detailed
information please refer to 4.1.1.4

job It is the job object of the user. For detailed
information please refer to 4.1.1.5

activity It is the activity object of the user. For detailed
information please refer to 4.1.1.7

userID It is a string defining the unique id of the user

time It is a Datetime object defining the time of the job

tableName It is a string defining the name of the table that the
job will be executed.

ip It is a string defining the ip address of the database

port It is a string defining the port number of the
database

dbname It is a string that defines the name of the database

password(Database) It is the password credential of the database

username(Database) It is the username credential for the database

operations It is a list consisting of operations that the modal
includes. For detailed information please refer to
4.1.1.3

userID(Activity) It is a string defining the user id that owns the
activity object.

 SOFTWARE REQUIREMENTS SPECIFICATIONS

time It is a Datetime object defining the execution time of
activity.

activityDetail It is a string defining the details about the activity.

userID(Reports) It is a string defining the user id that owns the report
object

date(Report) It is a Datetime object defining the creation date of
report.

reportpath It is a string defining the path of the report in
storage

Table 22: Description of the Data Model

Method Description

changeUsername It is method that changes the username .

changePassword It is method that changes the user password.

addDatabase It is a method that add a new database to user’s
object

showReport It is a method that shows the reports to the user.

addModel It is a method that adds the new model to the
models of new object.

removeModel It is a method that removes the model

showActivity It is method that shows the activities of the user’s
object.

createJob It is method that creates the new job.

executeQuery It is method that executes to given query given
database

createModel It is method that creates a new model in job object

generateReport It is method that generates the new report to the
user

createActivity It is method that creates the new activities.

optimizeFeatureSet It is method that optimizes the feature set

detectAnomaly It is method that detects the anomaly in data

correctAnomaly It is method that correct anomaly in data

visualizeTable2D It is method that demonstrates the table in 2D
dotplot

visualizeTable3D It is method that demonstrates the table in 3D
dotplot

Table 23: Description of the methods

 SOFTWARE REQUIREMENTS SPECIFICATIONS

4.2 ENTITY RELATIONSHIP MODEL

Figure 23: Entity Relationship Diagram

 SOFTWARE REQUIREMENTS SPECIFICATIONS

For all entity object except notification primary keys are chosen as 32 bit unique uids because of security issues.

Notification table will have very few records, so primary key field for notification is just chosen as integer. The

database of the system is designed in such a manner that no information is kept more than once. The tables are

connected to each other with foreign keys to keep track of information without replicating the data.

4.2.1 MEMBER ENTITY

Member entity defines the user of the system. It has field’s id, name, surname, and password and user name.

Password of the users are kept under md5 encryption for the sake of security. User name for each user is unique.

4.2.2 MEMBER LOGIN LOG ENTITY

Member login log entity is the record of the users in terms of sessions. It keeps the information that when a user

logs into system and how much does it lasts. User_fk defines the member id, sid defines the specific id for the

related session, startdate is the exact time by the session starts. Last act date is the time that the user takes action

in the system, Ip address is the Ip of the user and terminate is the information about whether the session is

terminated by the server or not(i.e. a multiple login with the same username)

4.2.3 DATABASES ENTITY

Databases entity is simply the records of the databases that the users connected to the vitriol. Ip, port,

database_name, user_name and password are nothing but the credentials of the database of the user. member_fk

defines the member id, that the database belongs to and is_active shows whether the database is active or not.

4.2.4 TABLES ENTITY

Tables just demonstrate the tables in each database from the databases entity. Table name field is simply defines

the name of the table and database_fk demonstrates which database does the table belong to.

4.2.5 COLUMNS ENTITY

Columns demonstrate the columns of each tables. The data_type field is for the type of the column such as integer

varchar. Column name is the name of the column and tables_fk defines which table does the column belongs to.

 SOFTWARE REQUIREMENTS SPECIFICATIONS

4.2.6 STATISTICS ENTITY

Statistics entity stores the information about the statistics related to the columns. Mean value is the field that the

mean value for the column kept. Median is for median and standard_dev is for standard deviation. Is_sparse,

is_dense, is_continious is_discrete fields are for the sparse-dense and discrete-continuous information for the

column. Also number of the data in the column and number of outliers are kept. Finally columns_fk is for the

column id that the statistics belongs to.

4.2.7 NOTIFICATION ENTITY

Notification is for the categorize the notification of the system. At first 4 types of notifications are planned. "These

are the process that was started in 'date' is finished", "You are not logged into the system since 'date'", "A new

feature is added to the system, would you like to try" and "The system will be unavailable between 'date-date'".

4.2.8 USER NOTIFICATION ENTITY

User notification is for the information that is pushed to the client as notification. It references the notification

table for the type of the notification and complete the missing parts with the fields startdate, enddate and

task_name. The index_update_date is for the trigger function which keeps the last update time (insert or update)

of the row.

 SOFTWARE REQUIREMENTS SPECIFICATIONS

5. REFERENCES

[1] IEEE Guide for Software Requirements Specifications," in IEEE Std 830-1984 ,pp.1-26, Feb. 10

1984, doi: 10.1109/IEEESTD.1984.119205,

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=278253&isnumber=6883&tag=1

[2] Nodejs Api Documentation

URL : https://nodejs.org/en/docs/

[3] Pm2 Product Documentation

URL: http://pm2.keymetrics.io/docs/usage/cluster-mode/

[4] Memcached Product Documentation

URL: https://github.com/memcached/memcached/wiki

[5] Nagios Product Documentation

URL: https://www.nagios.org/about/

[6] Centos Product Documentation

URL: https://www.centos.org/about/

[7] Apache Spark Documentation

URL: http://spark.apache.org/docs/latest/

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=278253&isnumber=6883&tag=1
https://nodejs.org/en/docs/
http://pm2.keymetrics.io/docs/usage/cluster-mode/
https://github.com/memcached/memcached/wiki
https://www.nagios.org/about/
https://www.centos.org/about/
http://spark.apache.org/docs/latest/

