System Test
Documentation

for

Hypnos

Version 1.0 approved

Prepared by

Ozge Lule
Esref Ozturk
Baris Ozkuslar
Oguzhan Unlu

Newline



Introduction
Problem Definition
1.2 Purpose and Scope
Details for system test plan
Test Items and Their Identifiers
Features to be Tested
Features not to be Tested
Approach
ltem Pass/Fail Criteria
Suspension Criteria and Resumption Requirements
Test Management
Testing a sub component within itself
Testing the communication protocols and interactions between adjacent sub-system
components
Integration of the complete system and testing
System Test Levels
Wearable Component Level
Wearable Test 1
Wearable Test 2
Wearable Test 3
Wearable Test 4
Fixed Component Level
Fixed Component Test 1
Fixed Component Test 2
Fixed Component Test 3
Cloud Component Level
Cloud Component Test 1
Cloud Component Test 2
Cloud Component Test 3
Mobile Application Component Level
Mobile Test 1
Mobile Test 2
Web Application Component Level
Web Test 1
System Integration Level

System Test 1




1.1. Problem Definition

This software product will be built in five main parts, and these parts will have their own
design fashions. These parts are wearable, fixed, cloud, mobile application and web
respectively. The project aims to develop a sleep tracking and feedback system so that,
designed physiological sensing system can provide reliable vital signs measurements and
incorporating real-time decision support. The project can be used to track a user for a period of
time and to detect immediate changes on individual that can be sign of an emergency.
Modularity of this project will also provide different configurations for different targets.

1.2 Purpose and Scope
The purpose of this document is to provide the test cases of the Hypnos project. It
defines the objective, scenario, expected outcomes and procedural requirements for each test
case. It also includes a table showing which test case is related to which one. The software will
be tested using guidance of this document. Although it covers all the test cases specifically in
detail, a little portion of the details is subject to change in test phase.

This section describes the specific items to be tested at different levels and provides a
Test Traceability Matrix that links the items to be tested with the requirements.

1.1. Test Items and Their Identifiers

Since the system consists of five subsystems which can be identified as components or
levels, each subsystem is an object of tests. Integration of these components shall be
included to tests as well.

1.2. Features to be Tested

Software in Arduino Board is going to be tested deployed with different combinations
of sensors. Bandwidth of Xbee module and serial port of Arduino will be in the features to be
tested.

Database in cloud will be tested for different cases. Data collection software will be
tested connected to the database. Analysis tests are going to be held with differentiating
conditions.

Web application will have its individual tests. Phone application tests will be held for
notifications and availability.



Protocols between components of system are subjects to the test. System-wide integration
can be included in features to be tested as well.

1.3. Features not to be Tested

Device dependency tests for hardware architectures other than already stated ones
will be omitted. Arduino board is able to employ more than three sensors but no additional
sensors will be tried. Rationale behind that is lack of available hardware components and
undecided design.

Third-party open source libraries usually conduct their own tests, so tests for those
libraries will only take place in integration and unit tests of software implemented.

User stress tests for server will not exceed a certain limit because, for a brand new
product, hardware requirements for scaling are subjects of successive test documents.
Security tests will also be postponed for this version of document.

For each level, tests will be held using simulated inputs flow originated from lower
levels since real world inputs are not sufficiently required.

1.4. Approach

Every level of test have its individual approach. Detailed information can be found in
chapter 3.

1.5. Item Pass/Fail Criteria
There are several test categories which specify fail criteria for different tests:

e Integrity Checks: If integrity of values are not preserved during relay operations, test is
failed.

e Connectivity Tests: If packages or connection is lost, test is failed.

e Analysis Accuracy Checks: If analysis accuracy is lower than 70%, test is failed.
Integration Tests: For integration tests, predecessor component shall be available for
test status to be passed, otherwise it is failed.

e Performance Tests: There is no specification of delays that is not negligible in this
version of document.

e Unit Tests: Unit crash or permanent failure means that test is failed.



1.6. Suspension Criteria and Resumption Requirements

During integration tests, if one lower level fails, tests associated with the lower level
are invalidated. In such a case, tests for both levels shall be repeated. For system integration
tests, any type of component crash requires this test to be suspended. Unit tests for crashed
item shall be conducted again.

2. Test Management

Best way to test the whole system is creating subsystem tests. This approach is superior
to complete system testing because subcomponents are pretty big already. Their interactions
and communications with each other should be well defined and work steadily. Finally the
complete system integration and testing must be performed. Thus the workload of testing
schema is as follows:

2.1. Testing a sub component within itself

This process ensures that the component is working without any interaction by any other sub
components. To be able to conduct this test procedure for the wearable subsystem, in addition
to cores of the hardware such as micro-controller, pulse sensor, temperature sensor,
accelerometer, we need a serial connection to a workstation. This will allow us to be able
analyze & debug the embedded code much more efficiently. On the other hand, remaining
subsystems do not depend on specialized hardware/software parts. Nevertheless, their unit
tests are written by corresponding programming languages (Python / C) and deployed
individually on them.

2.2. Testing the communication protocols and interactions between
adjacent sub-system components

Purpose of this part is to stabilize inter subsystem communications. Techniques are mostly
composed of erroneous situation generation. As defects reveals the real life situations more
realistically. Sending an invalid JSON object from fixed component to cloud server might be an
example. In fact, when exactly an exception occurs and how subsystems reacts those are the
heart of this test activity.

2.3. Integration of the complete system and testing

This is the final test scenario and describes how will the complete system work when it is
deployed in real life. Thus, conducting stress tests for the system is necessary obviously. To
make stress testing effective, several duplicate simulators will be designed and executed. Those



simulators mimic realistic behaviors of the subsystems. As an example, wearable component
simulators generate data for the fixed component.

3.1. Wearable Component Level
3.1.1.Wearable Test 1

Test Case Ildentifier WEARABLE-TEST-01

Objective Correctness of temperature sensor measurements

Scenario Heating and cooling the temperature sensor via external
inputs

Input Holding the analog temperature sensor for a while and blowing
the cold air to the sensor afterwards.

Outcome Temperature output of the micro-controller smoothly rises first
and falls later on.

Requirements Avoidance of extraordinary noise interruption

3.1.2. Wearable Test 2
Test Case Identifier | WEARABLE-TEST-02

Objective Correctness of pulse sensor measurements

Scenario Breathing heavily when equipped with pulse sensor on the
finger

Input Increasing rate of the person's heart rate

Outcome Heart beat per minute data output of the micro-controller rises

Requirements Equipping the pulse sensor properly so that no extra

environmental light disturbs the led of the sensor
3.1.3. Wearable Test 3

Test Case Identifier | WEARABLE-TEST-03

Objective Correctness of accelerometer measurements

Scenario Tilting, pushing, pulling and moving the accelerometer

Input Changing accelerometer data with respect to the 3 axises

Outcome Rapid changes for the accelerometer output of the
micro-controller

Requirements Calibration and sensitivity settings should be properly

configured for the digital accelerometer sensor

3.1.4. Wearable Test 4

Test Case Identifier WEARABLE-TEST-05
Objective Xbee connection establishment



Scenario
Input

Outcome

Requirements

Bringing the peer device closer and send it away later on
Increasing the power level of the xbee signal, then decreasing
it.

First, micro-controller sets up a xbee connection with the peer
and sends measured data to it. Whenever the peer is far away
from the micro-controller, connectivity drops. The whole
scenario is looped again when the peer is getting closer.
Necessary configurations on Xbees prior to connection

3.2. Fixed Component Level
3.2.1.Fixed Component Test 1

Test Case ldentifier
Objective

Scenario

Input

Outcome
Requirements

FIXED-TEST-02

Getting Sensor Data

Sensor data is obtained from wearable device.

Data queue of a sensor periodically enqueued with new sensor data
Periodically obtaining the same data from queue concurrently

A simulator which generates sensor data or wearable device input is
required

3.2.2.Fixed Component Test 2

Test Case Identifier
Objective
Scenario

Input
Outcome
Requirements

FIXED-TEST-02

Regular Sender Periodic Send Operation

Given a period by configuration file, regular sender thread works
every N seconds to wipe out the output sensors, pack the sensor
data and send them to cloud.

Regular sensor data.

Threads work concurrently and without starvation

FIXED-TEST- 01 should be successful

3.2.3.Fixed Component Test 3

Test Case Identifier
Objective
Scenario

Input
Outcome

FIXED-TEST-03

Urgent Sender Immediately Send Operation

In case of emergency identified by analyzer, urgent sender thread
sends the emergent situation data immediately to the server.
Urgent sensor data.

If network delays are ignored, there is no delay when sending data
to cloud



Requirements

FIXED-TEST- 01 should be successful

3.3. Cloud Component Level
3.3.1.Cloud Component Test 1

Test Case Identifier
Objective

Scenario

Input

Outcome
Requirements

CLOUD-TEST-01

To test the register component of the system

User sends register info via mobile application

name, surname, address,phone email, password, device id
A new user is created in the system.

The mobile application should be started

3.3.2.Cloud Component Test 2

Test Case Identifier
Objective

Scenario

Input

Outcome
Requirements

CLOUD-TEST-02

To test the login component of the system with valid data
User sends login info via mobile application

username, password

The user is logged in to the application.

The mobile application should be started and user must be
registered.

3.3.3.Cloud Component Test 3

Test Case Identifier
Objective

Scenario

Input

Outcome
Requirements

CLOUD-TEST-03

To test the logout functionality.

User sends logout info via mobile application
None

The session should be invalidated.

The mobile application should be started and user must be logged
in.

3.4. Mobile Application Component Level
3.4.1. Mobile Test 1

Test Case Identifier
Objective

Scenario

Input

MOBILE-TEST-01

Testing the Emergency Notification Systems’ Registration
procedure

When a user installs the mobile application and runs it, he or she
will be required to enter an emergency contact number
Providing the emergency contact number



Outcome Emergency contact number will be registered to cloud automatically
Requirements -

3.4.2. Mobile Test 2

Test Case Identifier MOBILE-TEST-02

Objective Testing the Emergency Notification

Scenario An event, such as ‘dangerously high temperature’, occurred that
needs a notification to be sent to emergency contact. Then for such
cases, our server sends messages to emergency contacts.

Input -

Outcome Emergency contact will be texted.

Requirements -

3.5. Web Application Component Level
3.5.1.Web Test 1
Test Case Identifier WEB-TEST-01

Objective Testing display of real time sensor values

Scenario User opens dashboard and real time sensor values are shown on
line charts

Input User logins to web application

Outcome User sees real time sensor values

Requirements -

3.6. System Integration Level
3.6.1.System Test 1
Test Case ldentifier SYSTEM-TEST-01

Objective Testing the whole data flow from sensor to cloud

Scenario Sensors on hardware are working and sampling data with an
arbitrary rate.

Input Sensor’s Input

Outcome Data is transmitted to the cloud

Requirements User has sensor hardware, fixed device working. Cloud is running.



