METU - Department of Computer Engineering

SOFTWARE
DESIGN
DOCUMENT

WebCat

3 June 2016

Group Name:

Overcode

Group Members:
Mert Basmaci - 1819119
Onur Ozan Yiiksel - 1881663
izzet Baris Oztiirk - 1881796

Ozge Donmaz - 1819234



V§ METU Department of Computer Engineering

CONTENTS

1. Introduction
1.1. Purpose
1.2. Scope
1.3. Overview

2. Definitions, Acronyms and

Abbreviations
3. Design Viewpoints
3.1. Context Viewpoint
3.2. Composition Viewpoint

3.3. Dependency Viewpoint

1. Introduction
1.1. Purpose

This software design document is intended to give the reader a clear perspective
about WebCat, which is the first web categorization tool designed for Turkish web pages.
The document is to describe the functional structure of the system, also the system
resources. The intended audience of this project could be anyone who seeks web page
categorization or web page filtering; however, it's been predicted that the companies
who need filtering for their networks during the working hours has the lion's share of the
intended audience.



V§ METU Department of Computer Engineering

1.2. Scope

The finalized version of the system can identify the category of a web page by going
through it’s written content. There are 125 category alternatives into which Turkish web pages
can be grouped. By this way, the system has also a pioneer role (being the first Turkish
web-categorizer aside) because this much alternative hasn’t been tried before. It is also given
importance to systems performance that enables users to perform quick categorization.

1.3. Overview

The system is composed of different components such as web-crawler, database and

machine learning tools and algorithms. Data is collected on the background by the web-crawler.
All the Turkish web pages are visited, categorized and recategorized (if needed ) into groups
regularly. Categorization is done by machine learning having the supervised and
semi-supervised learning sense. The system takes the advantage of using database in crawling
and categorizing phases due to that it performs operations on big data.

2. Definitions, Acronyms and Abbreviations

IEEE The Institute of Electrics and Electronics
Engineers

TCP Transmission Control Protocol

Weka Waikato Environment for Knowledge Analysis

JDBC Java Database Connectivity

3. Design Viewpoints

3.1. Context Viewpoint

This section is aimed to denote the interaction between the system and the users
of the system. Use case and interaction-overview diagrams are used to depict those
interactions. You can find the diagrams below. (See Figure 1-2-3 and their explanations)



V§ METU Department of Computer Engineering

/ Database
TEm < <indude>>
Crawler

Visit Web Page i

Add to Frontier

<indude ==

CR

Figure 1: Use Case Diagram 1

f-t I\ - """"" 7 GetCat EE
GUI 5 < <indude > >
Eul Database
/ _"<<extend>>
------- <<induce>>
=7 N Add to Database
User \\\\

2 Te. . =<<indudez>
S <<indude>>
=

Master Categorization Slave Categorization

Figure 2: Use Case Diagram 2

X

Weka




V§ METU Department of Computer Engineering

ID:|UC-1

Title:| Already Categorized

Description: | The URL that user entered is already categorized and stored in database.

Primary Actor: | User / GUI

Preconditions: | URL and it's category is in database

Postconditions: | The category is returned to user

Main| 1. User types the URL of the webpage into the space on GUI page.
Success| 2. User presses “Enter” button or clicks “Categorize” button.
Scenario: | 3. GUI connects to Database.
4. Makes the category requesting query.
5. Database returns the category of the page.
6. GUI shows the category in the text box just below the URL.

Extensions: | 3a. GUI can't connect to Database. Shows connection error on screen.

5a. Database returns category as “Not Found” if the condition wasn't met. Refer
to UC-2.

Frequency of

{iii Half of the queries. (probably)




METU Department of Computer Engineering

1D:

uc-2

Title:

Needs to be Categorized

Description:

The URL that user entered was not categorized at the time user enters.

Primary Actor:

|U'_=.renf GUI

Preconditions:

URL and it's category is not in database

Postconditions:

Web page categorized and its added to the database. GUI returns its category.

Main
Success
Scenario:

1. User types the URL of the webpage into the space on GUI page.

2. User presses “Enter” button or clicks “Categorize” button.

3. GUI connects to Database.

4. Makes the category requesting query.

5. Database returns the empty list to the query.

6. GUI asks user the desired classification method.(Standard or Nested)

7a. If user has chosen “Standard Classification”, standard classification
function is called and the function returns it's category in few seconds.

7b. If user has chosen “Nested Classification”, master classification function is
called then the slave classification function is called with the output of the
master classification function. The slave classification function returns the
category of the web page.

8. The newly found category is added to the database alongside with the URL.
9. Found category is shown in GUL

Extensions:

3a. GUI can't connect to Database. Shows connection error on screen.

Frequency of
Use:

Half of the queries. (probably)




V§ METU Department of Computer Engineering

1D:

ucC-3

Title:

Craw ler Initial Start

Description:

The crawler starts and continues indefinitely.

Primary Actor:

Craw ler

Preconditions:

Seedlist should be filled in database.

Postconditions:

Main
Success
Scenario:

1. The craw ler program starts.

2. Crawler gets its initial web pages to visit list from database.

3. Visits the next page on the list.

4. Stores the page's url in to-be-categorized table in database.

5. Finds the new links from the page and adds them to to-visit list.
6. Repeats from 3™ step till the list finishes.

7. Repeats from 2 step.

Extensions:

2a. Database connection fails shows error and stops.
2b. The seedlist table in database is empty, precondition was not met. Shows
error and quits.

Frequency of
Use:

1 time at initial start.




V§ METU Department of Computer Engineering

1D:

uc-4

Title:

Categorizer

Description:

The categorizer component that categorizes the pages that crawler had found.

Primary Actor:

Categorizer

Preconditions:

Craw ler should be working before hand.

Postconditions:

Main
Success
Scenario:

1. The categorizer program starts.

2. Gets to-be-categorized list from the database.

3. Gets the next url on the list and confirms that it is not classified and stored in
the database yet.

4. Gets the content of the web page belongs to the url.

5. Categorizes the content using standart classification.

6. Adds url and the newly found category to the database.

7. Removes the row from the database table that is being filled by crawler.
8. Repeats from 3* step until the list is finished.

9. Repeats from 2™ step until the query returns empty.

10. Sleeps for 10 minutes.

11. Repeats from 2™ step.

Extensions:

2a. Database connection fails shows error and stops.
3a. The web page is already categorized and exists in the database, the program
skips to 7 step then continues.

Frequency of
Use:

1 time at initial start.




V§ METU Department of Computer Engineering

sd : Categorize URL

ref

check if up-to-date

found in DB

ref

Search URL in DB

<> >

not up-to-date

return category

not found in DB

ref
Turkish
/ content crawl and get content )
categorize via machine learning

other languages

handle errors

Figure 3 : Interaction-Overview Diagram

3.2. Composition Viewpoint

This section is intended to give a high level overview of how responsibilities of the
system were partitions and assign into subsystems, namely GUI, web-crawler, database,
machine learning algorithms and tools and their interactions between each other.

As you see in Figure 4 below, there are three main categorization models stored in the
system, slave, master and standard models respectively. Standard and nested classification are
directly connected to the previously categorized data, where the model training is connected to
machine learning component, textToArff, where supervised learning takes place. Standard and
nested classification is used when a web page is queried. The database is checked if the
corresponding web page is previously categorized, if not it is crawled and categorized. Crawler
benefits from language detection and a built-in, but specialized crawler; machine learning
component uses a built-in Turkish morphology tool as a subcomponent.



V§ METU Department of Computer Engineering

«components E
Models
wartifacts aartifacts wartifacts
slaveModels masterModel standardModel
zcomponents acomponents «components
standartClassification nestedClassification modelTraining
=4 yis
E {I «components
«COMPONEents _@ «Components urfToArff
GUI categorizer (:O—
/O scomponents 40)7 acompenents —O}— «components
E E htmiToText textToVector vectorToArff
«COMPONENts «components
Database weka.jar
(L E
Y v
«COMPONEnts «COMPONENt: «Ccomponents
crawler [T > crawlerdj.jar zemberek.jar
ey «COmponents
langDetect.jar

Figure 4 : Component Diagram

3.3. Dependency and Deployment Viewpoint

This section describes how the data flow across the components of the system.
Dependencies between the components are depicted with deployment diagrams (see Figure 5).

As you can see from the deployment diagram below, the crawler and machine learning
are put together to the application server when deployed. Data repositories and GUI are
deployed into different servers, DB server and Web Server respectively. The systems is mainly
design for API, but it is also reachable for other users from the Internet. The security and
reliability is provided by using protocols between the servers (HTTP, TCP and JDBC). After the
deployment process is done, system will be available with 90% guarantee.



‘§> METU Department of Computer Engineering

<<protocol>>

HTTP

<<device>>
Client User

<<device>>
Web Browser

<<artifact>> D
HTML5

<<device>>
Web Server

<<artifact>> D

GUI

<<device>>
Client User

L <<protocol>> |
TCP

<<protocol>>

TCP

<<artifact>>

O

API

Figure 5 : Deployment Diagram

<<device>>
Application Server
{OS = centOS}

<<artifact>>

zemberek-tokenization-0.9.0 jar
zemberek-morphology-0.9.0 jar
zemberek-Im-0.9.0 jar
zemberek-core-0.9.0 jar

0.

guava-15.0jar
berkeleylm-1.1.2 jar
antlrd-runtime-4.0.1z jar
Weka.jar
LangDetect.jar
Crawlerdj.jar
jSoup jar

<<artifact>>
WebCat/src

JDBC

JDBC ————

<<device>>
Database Server
{OS = centOS)
PostgreSQL

crawlerFrontier
Table

2]

Categorized Table
(64-bit Encoded)

seedList Table

jonkne diagramiming & design] CIr@ate

com

10



‘19 METU Department of Computer Engineering

"



