
Software Requirements Specification

Prepared by SMESHERS

for the project MESHTIKA*

METU - Department of Computer Engineering

CENG 491 Senior Design Project I

Fall 2015-2016

* Project code-name; subject to change when release.

SRS Documentation of Meshtika DGP Toolkit

Table of contents
1. Introduction..4

1.1 Problem Definition..4
1.2 System Overview..4

1.2.1 Meshtika API...4
1.2.2 Meshtika IDE...5

1.3 Definitions, acronyms, and abbreviations...6
1.4 Assumptions and dependencies...6

2. Overall description...7
2.1 Product functions...7

2.1.1 Use-case model survey..7
2.1.2 Actor survey...8

2.2 Interfaces...8
2.2.1 User Interfaces...8
2.2.2 Hardware Interfaces...12
2.2.3 Software Interfaces..13

2.3 Constraints...13
3. Specific requirements...14

3.1. Functional Requirements..14
3.1.1. Change User Preferences..15
3.1.2. Develop Algorithm...17
3.1.3. Use DGP Specific API..19
3.1.4. Analyze Algorithm..21
3.1.5. Debug Step by Step..23
3.1.6. Use Visual Debugger..25
3.1.6. Profile Algorithm..26
3.1.7. Reference Output Comparison...28
3.1.8. Plug-in Support...29
..29

3.2 Nonfunctional Requirements...30
3.2.1 Usability...30
3.2.2 Reliability..31
3.2.3 Performance...31
3.2.4 Supportability..32

4. Data Model and Description..32
5. References..35

2

SRS Documentation of Meshtika DGP Toolkit

Index of Tables
Table 1: Packages in Meshtika API..5
Table 2: Tools in Mestika IDE...5
Table 3: Use Case Descriptions..8
Table 4: Header GUI..9
Table 5: Info GUI...10
Table 6: Preferences GUI...10
Table 7: Code Editor GUI..11
Table 8: Interactive 3D Canvas GUI..11
Table 9: Step-by-step debugger GUI..12
Table 10: Profiler GUI...12
Table 11: Software Interfaces...13
Table 12: Change User Preferences Use Case...16
Table 13: Develop Algorithm Use Case...18
Table 14: Use DGP Specific API Use Case...20
Table 15: Analyze Algorithm Use Case...22
Table 16: Debug Step by Step Use Case..24
Table 17: Use Visual Debugger Use Case..26
Table 18: Profile Algorithm Use Case...27
Table 19: Reference Output Comparison Use Case...28
Table 20: Plug-in Support Use Case..30

3

SRS Documentation of Meshtika DGP Toolkit

1. Introduction
This documentation is intended for anyone who wishes to understand how software Meshtika works.
All system constraints, functionalities and elements included in the system are explained in detail. By
using this documentation, developers can collaborate in order to shape the project to the final
specification or they can extend the boundaries of the system for further demand. The documentation
consists of four main parts, each targets a different audience. The first chapter is an introduction to the
project where the software components and their purpose are described; the second chapter is the
overall description of the project where the functionality is briefly described along with various
interfaces used in the system; third chapter serves to a deeply elaborated requirements analysis and the
final chapter; describes the data model of the project. One is free to read any chapter in any order.
However, it is recommended to read the first one as the very first chapter defines the abbreviations
required to understand this document, with some assumptions and constraints which play the key point
when describing requirements of software components.

1.1 Problem Definition

Processing of digital geometries and of images, or modeling neural networks all require extensive
visual debugging in development due to their nature of dealing with large amount of data, which is
mostly nonsense for a naked-eye. Therefore development in these subfields of computer science
usually goes parallel with a viewer, plotter or any kind of data visualizer.

Meshtika is a digital geometry processing toolkit, which offers a rich application programming
interface with a fully integrated development environment which are both equipped and crafted for
DGP specialists in target. In API, many DGP specific algorithms and data structures are offered; on the
other hand in IDE, GUI supported development tools are offered. Although there exist tools in the
software industry for geometry processing, they are frequently in the form of only programming
interfaces. Thus, specialists of the field suffer from integrating 3rd party development tools on their
own.

The basic idea behind the project is, therefore, to provide an all-in-one, rich and robust environment
and tools for the target audience.

1.2 System Overview

We can split the products Meshtika offered in two parts. One is the API, the other is the IDE.

1.2.1 Meshtika API

API holds a rich digital geometry processing algorithms and data structures frequently used in DGP.
The following packages are offered in product API: sampling, distance, voxelisation, descriptors,

4

SRS Documentation of Meshtika DGP Toolkit

space-partitioning, mesh and visual.

Sampling This package contains sampling algorithms.

Distance This package contains distance algorithms.

Space-partitioning This package contains space-partitioning algorithms.

Voxelisation This package contains voxelisation algorithms.

Descriptors This package contains structures for mesh recognition; i.e. to determining
that two meshes are similar.

Mesh This package contains relatively lower lever, but still user friendly mesh
related API

Preferences This package contains user preferences for IDE to use

Visual This package contains visual debugger related API

Table 1: Packages in Meshtika API

See software design documentation for further information like the contents of each package.

1.2.2 Meshtika IDE

IDE holds several tools with GUI support. Following tools are offered in IDE: Code Editor, Interactive
3D Canvas, Info, Header, Step-by-step Debugger and Profiler.

Code Editor Default code editor with capabilities: syntax highlighting, code
completion, tab and basic text editor operations.

Interactive 3D Canvas Default 3D canvas with trackball navigation, panning, zooming, peripheral
event propagation capabilities.

Info Default output panel with three channel output capability.

Header Default component for communication between IDE and end-user.

Step-by-step Debugger Default step-by-step classic debugger.

Profiler Default profiler with memory consumption and timing measure
capabilities.

Table 2: Tools in Mestika IDE

Please note that all six tools of IDE are GUI - supported.

5

SRS Documentation of Meshtika DGP Toolkit

1.3 Definitions, acronyms, and abbreviations

Below is a list of definitions, acronyms and abbreviations required to interpret this document properly.

DGP Digital Geometry Processing

CGI Computer Generated Imagery

API Application Programming Interface

IDE Integrated Development Environment

GUI Graphical User Interface

SRS Software Requirement Specification

SDD Software Design Document

SSD Step by Step Debugger

WYSIWYI What you see is what you implemented

EU End User

UML Unified Modeling Language

editor Code Editor (Text Editor, are used interchangeably) (software component)

canvas Interactive 3D Canvas (software component)

info Info (software component)

header Header (software component)

profiler Profiler (software component)

debugger Step by Step Debugger (software component)

output Anything written to Info is output

mesh A data structure in computer graphics

vertex A data structure in computer graphics

1.4 Assumptions and dependencies

Project Meshtika is built upon Blender ™ v.2.76. [1] However, maintenance of the project does not
follow the new versions of the legacy code. Therefore, there is literally no dependencies for Meshtika.

6

SRS Documentation of Meshtika DGP Toolkit

2. Overall description
This section consists of inclusive explanations of main factors of Meshtika, i.e. product functionalities,
user characteristics and limitations regarding the system.

2.1 Product functions

This section includes the brief information related to the functions provided by Meshtika. The
information is divided into two subcategories regarding the explanations of the use cases and their
actors, respectively.

2.1.1 Use-case model survey

The use-case model survey section consists of the functions that the project offers. In order to provide a
better insight, an entire use case diagram is given below.B

7

Figure 1: Use-case Diagram

SRS Documentation of Meshtika DGP Toolkit

In order to present what these use cases are actually for, their overall roles in the project, the actors
related to them and the relations between them are briefly explained in the table below. Please also note
that detailed explanations of these use-cases can be found under the section 3.1, regarding functional
requirements.

Use-case Name Description

Develop Develop a custom DGP algorithm in the environment. IDE offers a
robust text editor for this purpose.

Step-by-step Debug Detect the logical errors the custom algorithm may have by classic step-
by-step debugging technique

Visual Debug Detect the logical errors the custom algorithm may have by visual
debugging technique

Compare algorithm Compare the behavior of the custom algorithm with a known, already
implemented one

Use DGP API Develop a custom DGP algorithm in the environment by an offered,
easy-to-use API

Develop Plug-in * Develop plug-ins that enhance the capabilities of Meshtika, rather than
developing only custom algorithms for test purposes.

Customize IDE Change predefined settings for the IDE (through preferences) for the
suitable working environment

Table 3: Use Case Descriptions

* Plug-ins are supported by the project and licenses do not withhold the end-user for commercial
benefit.

2.1.2 Actor survey

There is only one human actor for Meshtika, excluding software components. Throughout the
document, he is called the end-user, which is sometimes abbreviated to EU. The target audience of
Meshtika is people who are interested in digital geometry processing, therefore EU corresponds to any
DGP specialist who can make use of the software.

2.2 Interfaces

Below are the interfaces the project relies on. The first subsection defines graphical user interfaces,
second subsection defines hardware interfaces, and the last subsection, subsection the third, defines
software interfaces required for Meshtika to operate.

2.2.1 User Interfaces

Meshtika provides seven main graphical user interface elements, each is a graphical representative of
underlying software component. They are Header, Info, Preferences, Code Editor, 3D Canvas, Step-by-
step debugger and Profiler.

8

SRS Documentation of Meshtika DGP Toolkit

 Figure 2: Depiction of the overall GUI

The default window layout consists of four of those elements. Since a profiler and a debugger is not
frequently used, they are usually hidden. User can access profiler and debugger through Header. Tables
including the detailed information related to these GUIs individually are given below.

GUI Name Header

Description Interface for end user to communicate with the IDE. For example, application
specific files are overwritten, or the application is quited through Header.

Sub-Widgets Three menus: File, Window, Help

Two buttons: Debugger, Profiler

A hidden label: Notifier (usually hidden)

Notes File: A menu that contains easy-access to file r/w related operations. User also
quits the IDE from this menu.

Debugger: A button that opens up step-by-step debugger panel.

Profiler: A button that opens up profiler.

Window: A menu that contains easy-access to GUI related operations. User can
select predefined window layouts.

Help: A menu that contains easy-access to documentations about software use,
or to software abouts.

Notifier: Reports exceptions of IDE to the EU. Notifier is only visible when
necessary; most of the time, this label is hidden. One example for the
exceptions that Notifier reports is when a file is failed to write to file system.

Table 4: Header GUI

9

SRS Documentation of Meshtika DGP Toolkit

GUI Name Info

Description Interface for outputs. Whenever a print statement is executed, the output
appears on Info, which has three output channels.

Sub-Widgets None

Notes There are three output channels. They are:

1. Output channel: Represents standard output. Anything on this channel is
displayed as black text.

2. Error channel: Represents standard error. Anything on this channel is
displayed as red text.

3. Warning channel: Represents standard warning, which is usually used for
warnings that come from legacy code. Anything on this channel is displayed as
orange text.

Table 5: Info GUI

GUI Name Preferences

Description Interface for user's customisations of Meshtika.

Sub-Widgets Required settings for software components.

Notes None

Table 6: Preferences GUI

10

SRS Documentation of Meshtika DGP Toolkit

GUI Name Code Editor

Description Code editor is where the end-user write scripts and this is the part of GUI that
the end user is expected to interact with the most. It provides a robust
environment to develop DGP algorithms by supporting necessary
functionalities that an editor should provide.

Sub-Widgets Two Menus: View and Text

A Button: RunScript

Notes View: A menu that contains view operations

Text: A menu that contains basic text editor operations

RunScript: A button that runs the current script

Code Editor supports working with multiple scripts at a time via tab windows.

The theme for Code Editor is customizable by the user in order to boost the user
experience.

Table 7: Code Editor GUI

GUI Name Interactive 3D Canvas

Description Interface for visualizing 3D content. Uses trackball navigation, panning and
zooming.

Sub-Widgets None

Notes Trackball navigation: Rotate the 3D camera around a pivot point, at a fixed
length called zoom.

Panning: Move camera w.r.t. its current orientation in a fixed plane.

Zooming: Increase/decrease zoom length.

Table 8: Interactive 3D Canvas GUI

11

SRS Documentation of Meshtika DGP Toolkit

GUI Name Step-by-step Debugger

Description Interface for debugging commands

Sub-Widgets Four buttons: Break, Step, Continue, Stop

Notes Break: A button for putting a breakpoint for a line. When a line is selected in
Code Editor (there is always one), press this button to put a breakpoint

Step: A button that is used to jumping to the next line

Continue: A button that is used to jump to the next registered breakpoint

Stop: Stop debugging

Step-by-step Debugger is integrated with the Code Editor to have the
functionality of adding a breakpoint by simply clicking on a line.

Table 9: Step-by-step debugger GUI

GUI Name Profiler

Description Interface for algorithm Profiler. The Profiler inspects time and memory
consumption of the custom algorithm.

Sub-Widgets Two Line Charts: Time, Memory

Notes Time: A line chart for time consumption of the custom algorithm, denoted in
green.

Memory: A line chart for memory consumption of the custom algorithm,
denoted in yellow.

Charts should be zoomable.

Table 10: Profiler GUI

2.2.2 Hardware Interfaces

In order for Meshtika to operate properly, only basic peripheral devices: a keyboard, a mouse
and a display screen are required. Although graphics tablets and 3D mice are supported by the legacy
software, they are not a requirement for this project.

12

SRS Documentation of Meshtika DGP Toolkit

2.2.3 Software Interfaces

Below is a list for required software packages for Meshtika to operate properly. Most of those
libraries are requirements for Blender ™ v.2.76. However, since Meshtika is built upon that
application, the legacy software interfaces are inherently requirement for the project.

Interface Version Description

ffmpeg 2.1.5 Decode-encode and stream algorithms for image and audio

OpenCOLLADA 1.3 Decode and encode algorithms for Collada 3D file format

OpenImageIO 1.4.16 Decode and encode algorithms for image

OpenColorIO 1.0.9 Color space conversions, algorithms for solving color problem
on different hardware ie. Gamma correction

OpenSubdiv 3.0.2 A very adaptive subdivision algorithm which suppressed
traditional Cutmull-Clark method, found by Pixar's R&D

OpenShadingLanguage 1.5.11 A shading language by Sony Pictures Imageworks, used in
Blender's Cycles engine and visual debugger of Meshtika

OpenEXR 2.2.0 Operations on HDR images

ILMBase 2.2.0 Dependency for OpenEXR, found by Industrial Light & Magic

Boost 1.58 Utilities for C++, pioneered many lacks be compensated in C+
+11/14/17

Python 3.5.0 Python 3.5 interpreter to drive Meshtika

Numpy 1.10.1 Numerical Python, efficient python library for numeric
operations. Most parts are implemented natively via cpython

Build-essential package 14.10 Software package of Ubuntu OS, which has OpenGL[2] and
other core libraries

Table 11: Software Interfaces

2.3 Constraints

There are several constraints the project Meshtika should follow. These constraints apply for
API and IDE parts of the software, and they are listed respectively as follows.

13

SRS Documentation of Meshtika DGP Toolkit

● API should let event based modeling; the project supports peripheral device events.

● API should let a development environment for developing algorithms for multiple

meshes.

● API should not depend on operating system.

● API should only support development in Python programming language.

● IDE should be a use-once environment. That is, only user preferences are hold in file

system, therefore only the changes in preferences are remembered between two
successive runs.

● IDE should not let access to calls for all legacy libraries through its lifetime.

● IDE should have one scene at a time.

● IDE should always be initialized to an empty scene.

● IDE should not depend on operating system.

3. Specific requirements
This section holds the detailed information related to functional and non-functional

requirements of the system and provides UML diagrams in order to give a strong understanding.

3.1. Functional Requirements

There are eight functional requirements for Meshtika, each of which is for the eight major use-
cases, as stated in section 2.1. These will be elaborated individually, including their sequence diagrams,
in the following subsections.

14

SRS Documentation of Meshtika DGP Toolkit

3.1.1. Change User Preferences

15

Figure 3: Sequence diagram of Change User Preferences Use Case

SRS Documentation of Meshtika DGP Toolkit

Use Case Name Change User Preferences

Description Users of Meshtika will have the power of customizing the platform, respecting
to certain limits, via user preferences. They can perform actions, such as
personalizing the theme of text editor, installing/ enabling/disabling add-ons,
which are the correspondents of classic plug-ins in the scope of Blender

Primary Actor End user

Secondary Actors None

Preconditions None

Postconditions None

Trigger Choosing the User Preferences from the File menu in the header GUI of the
program

Scenario As the user chooses User Preferences from the File menu, a pop-up window
appears. Then,
- user can change any of the given preferences in the window
- observe its effect immediately, especially if the preference is related to the
GUI.
Later, if the user decides to stick with the changed version,
- the user can save the updated preferences by clicking the button provided in
the pop-up window
-the updated version will now be used as startup version, which means that until
the user makes a new change on preferences, the application will be started and
used with the latest updated version of preferences.

Alternate Flow None

Exception Flow None

Extensions None

Use case Notes None

Table 12: Change User Preferences Use Case

16

SRS Documentation of Meshtika DGP Toolkit

3.1.2. Develop Algorithm

Figure 4: Sequence diagram of Develop Algorithm Use Case

17

SRS Documentation of Meshtika DGP Toolkit

Use Case Name Develop Algorithm

Description This is one of the four main use-cases of Meshtika: develop, profile, debug and
compare an algorithm. User runs his implementation and sees the result in the
interactive 3D canvas.

Primary Actor End user

Secondary Actors None

Preconditions SSD is not running
Comparison flag is not set

Postconditions SSD is available to be run

Trigger Pressing the 'RunScript' button of the code editor (text editor).

Scenario After the primary actor writes a DGP script in the code editor, he presses the
button 'Run Script'. This invokes the back-end driver, which makes some
necessary preparations to run the code. Those preparations are as follows in
order:
1. Initialize the scene by removing anything in the scene.
2. Initialize the output panel by removing any report in info.
3. Pick over the arguments of the custom algorithm.
4. Run the custom algorithm.
5. Invoke WYSIWYI of 3D Canvas.
6. Unless another algorithm is developed, i.e. 'RunScript' button is not pressed a
second time, current algorithm is the active one.

Alternate Flow None

Exception Flow None

Extensions If the step-by-step debugger is already running, this use-case is not available.

Use case Notes None

Table 13: Develop Algorithm Use Case

18

SRS Documentation of Meshtika DGP Toolkit

3.1.3. Use DGP Specific API

Figure 5: Sequence diagram of Change User Preferences Use Case

19

SRS Documentation of Meshtika DGP Toolkit

Use Case Name Use DGP Specific API

Description Most powerful side of Meshtika is its API product. That API has DGP specific
algorithms and data structures. (see section 1.2.1)

Primary Actor End user

Secondary Actors None

Preconditions None

Postconditions None

Trigger Importing meshtika packages

Scenario Actor calls desired functions and uses desired data structures both defined in
appropriate packages. They are DGP_Specific in the diagram above.

Alternate Flow None

Exception Flow None

Extensions None

Use case Notes None

Table 14: Use DGP Specific API Use Case

20

SRS Documentation of Meshtika DGP Toolkit

3.1.4. Analyze Algorithm

21

Figure 5: Sequence diagram of Analyze Algorithm Use Case

SRS Documentation of Meshtika DGP Toolkit

Use Case Name Analyze Algorithm

Description Meshtika lets its users to experience a “What you see is what you implement”
environment. This implies that users are able to track the outcomes of changing
dependents of their algorithms, by serving them the parameters of their own
scripts as editable entities and update the consequent view accordingly.

Primary Actor End user

Secondary Actors None

Preconditions A script should be existing and ready-to-run in the text editor.

Postconditions None

Trigger Pressing the run script button in the text editor.

Scenario -First the script is run from the text editor
-Accordingly, the back-end-driver is triggered for taking some necessary
actions, which are already explained in section 3.1.2. An addition to those is
providing parameters in the canvas.
-The driver deducts the parameters used in the user's algorithm and shows them
as editable entities in a side panel of the canvas.
Once the parameters are provided,
-The user can make changes on as much parameters and as many times as
he/she wants.
As a result of this action,
-The driver realizes this change and recomputes them, provides the mesh on the
canvas corresponding to the updated version of parameters.

The flow here is similar with user running his/her script with updating the
parameters manually in the text editors, but the distinction is that the user is
provided the parameters individually in a part of GUI and does not need to rerun
the script him/herself. Therefore, this use case is a quite beneficial one for the
users in order to track their changes, especially to observe which effect is caused
by which parameter adjustment.

Alternate Flow None

Exception Flow None

Extensions None

Use case Notes None

Table 15: Analyze Algorithm Use Case

22

SRS Documentation of Meshtika DGP Toolkit

3.1.5. Debug Step by Step

23

Figure 6: Sequence diagram of Debug Step-by-Step Use Case

SRS Documentation of Meshtika DGP Toolkit

Use Case Name Debug Step by Step

Description User debugs by classical step by step approach

Primary Actor End User

Secondary Actor None

Trigger End user puts at least one breakpoint and clicks Start

Postconditions 'Run Script' becomes enabled

Preconditions 'Run Script' should be enabled

Scenario - User puts at least one breakpoint for a line-by-line
- User press 'run'
- Debugger stops at breakpoint(s) and prints to local info when appropriate
- Debugger is killed if EOF is reached

Alternate Flow Debugger is killed if User presses 'stop' button

Exception Flow Debugger is killed if an exception is thrown

Extensions Can work cooperatively with visual debugger

Notes None

Table 16: Debug Step by Step Use Case

24

SRS Documentation of Meshtika DGP Toolkit

3.1.6. Use Visual Debugger

25

Figure 7: Sequence diagram of Use Visual Debugger Use Case

SRS Documentation of Meshtika DGP Toolkit

Use Case Name Use Visual Debugger

Description User debugs algorithm visually

Primary Actor End User

Secondary Actor None

Trigger End user makes appropriate API calls

Postconditions None

Preconditions None

Scenario - User imports Meshtika packages
- User calls visual debugger functions with intended visualization arguments
- User presses 'Run Script'

Alternate Flow None

Exception Flow None

Extensions Can work cooperatively with step-by-step debugger

Notes None

Table 17: Use Visual Debugger Use Case

3.1.6. Profile Algorithm

Figure 8: Sequence diagram of Profile Algorithm Use Case

26

SRS Documentation of Meshtika DGP Toolkit

Use case name Profile Algorithm

Description The user can make performance measurements and observe memory and
time usages of his/her work .

Primary Actor End User

Secondary Actor None

Preconditions At least one work (i.e algorithm) has to be runned.

Postconditions None.

Trigger Pressing “Run Script” button of the code editor.
Opening the Profiler pop-up window.

Scenario This use case is very bounded to the use case named “Develop Algorithm.”.
After pressing “Run Script” button, the steps are the same up to and
including “Run the custom algorithm” step. After this step :

Step1 : The user opens the Profiler pop-up window.
Step2 : The memory and time consumption of the algorithm is available in
the Profiler window.

Alternate Flow None

Exception Flow If the written script has compile-time or run-time errors, the algorithm
intended to be run will not be run and there will not be any statistics. The
user must debug his/her source code.

Extensions None

Use Case Notes None

Table 18: Profile Algorithm Use Case

27

SRS Documentation of Meshtika DGP Toolkit

3.1.7. Reference Output Comparison

There is no sequence diagram for this use case as it is quite similar to the Develop Algorithm use case
depicted in 3.1.2.

Use Case Name Reference Output Comparison

Description This is one of the four main use-cases of Meshtika: develop, profile, debug and
compare an algorithm. User runs his implementation and sees the result in the
interactive 3D canvas.

Primary Actor End user

Secondary Actors None

Preconditions SSD is not running
Comparison flag is set
Comparison base algorithm is assigned

Postconditions SSD is available to be run

Trigger Pressing RunScript button of code editor.

Scenario After the primary actor writes a DGP script in the code editor, he presses the
button 'Run Script'. This invokes the back-end driver, which makes some
necessary preparations to run the code. Those preparations are as follows in
order:
1. Initialize the scene by removing anything in the scene. Duplicate the loaded
meshes and assign them ghost shader. *
2. Initialize the output panel by removing any report in info.
3. Pick over the arguments of the custom algorithm.
4. Run the custom algorithm.
5. Invoke WYSIWYI of 3D Canvas.
6. Unless another algorithm is compared, i.e. 'RunScript' button is not pressed a
second time, current algorithm is the active one.

Alternate flow None

Exception flow None

Extensions If the step-by-step debugger is already running, this use-case is not available.

Use case Notes * This will let the actor compare the meshes loaded originally and the meshes
on which the custom algorithm is applied.

Table 19: Reference Output Comparison Use Case

28

SRS Documentation of Meshtika DGP Toolkit

3.1.8. Plug-in Support

Figure 10: Sequence diagram of Plug-in Support Use Case

29

SRS Documentation of Meshtika DGP Toolkit

Use case name Plug-in Support

Description The user can implement new features like functionalities or new data types
and register them to Meshtika. The user can also make use of extra features
which are implemented by other Meshtika users.

Primary Actor End User

Secondary Actor None

Preconditions The user has to know how to extend Meshtika.

Postconditions: If the user choose newly added plug-in(s) for using them in his/her work,
these preferences will be kept.

Trigger None

Scenario: Step1: The user implements functionalities.
Step2: The user registers the functionalities newly written.
Step3: The user opens Meshtika. When it is opened, the plug-in source
codes will be compiled and available in the application.
Step4: The user opens “User Preferences” window.
Step5: The user activates the new plug-in from application.
Step6: The plug-in is ready to use.

Alternate Flow Instead of Step1 and Step2, the user can use other plug-ins which are
implemented by other users. The user puts the plug-in source codes to the
related directories and the scenario continues with Step3.

Exception Flow None

Extensions None

Use Case Notes None

Table 20: Plug-in Support Use Case

3.2 Nonfunctional Requirements

3.2.1 Usability

Although the precise usability can be observed once the target audience starts to use Meshtika, it is
possible to state the following requirements in this scope:

• The user does not need to tackle with any problems regarding the GUI as it aims to be a simple
but functional one.

30

SRS Documentation of Meshtika DGP Toolkit

• It is expected that the user would not need to use any broad documentation or any other 3rd party
services related to GUI usage, which is quite a big change for this field's enthusiasts. For
instance, our base Blender requires several documentation and tutorial aids in order to be able to
make use of its GUI appropriately. [3]

• All API has a learning curve. However, API in Meshtika requires relatively shorter time when
compared to other competitors. There are two reasons for that. First, API in Meshtika is
designed in a way that learning it takes a little time for EU. Second, the target audience of the
project is people who are already interested in DGP, they are already accustomed to using
much harder environments, therefore Meshtika is an easy toolkit for them.

• User is not retained to develop a custom algorithm for any time limit.

• The time for providing the resulting mesh, parameters, debugging and profiling services are
aimed to be kept minimum.

3.2.2 Reliability

As the application is standalone, does not depend on any server or database, there is no concern of
keeping that kind of components up and running all the time. This indicates that there will not be any
availability problems either.

Accordingly, as long as there is no problem with the user's own operating system, it is expected that the
program will go on processing smoothly.

3.2.3 Performance

Performance requirements for Meshtika can be categorized into three. They are as follows:

1. Response Time:

For a mesh with 40K vertices, a naive algorithm should response in 0.5 seconds in average.

2. Capacity:

The application is standalone, and accepts one user at a time. There is no capacity requirement.

3. Resource utilization:

• 32-bit dual core 2Ghz CPU with SSE2 support.

• 2 GB RAM

• OpenGL 2.1 compatible graphics card with 512 MB RAM

31

SRS Documentation of Meshtika DGP Toolkit

3.2.4 Supportability

The users will write their scripts in Python, which involves huge support and maintenance itself.
Moreover, the naming conventions supplied the API of Meshtika will be as much easy-to-use as
possible, in order not to damage that.

Support for any kind of problem can be provided by the forums involving developers, i.e.
community, as it is expected for any open-source project, and the mean time to repair is tried to be kept
at minimum via supplying and maintaining the most beneficial information.

4. Data Model and Description
This section will give the information related to the data objects that will be managed by out

software. In order to achieve this, a class diagram representing the main parts of our toolkit and their
relations is provided. Moreover, a class dictionary that explains these classes in detail, including their
attributes, methods and relationships with other classes, in other words their roles in Meshtika, is given
underneath the diagram.

32

SRS Documentation of Meshtika DGP Toolkit

33

SRS Documentation of Meshtika DGP Toolkit

UserPref UserPref class holds the attributes of what user can actually
change on the GUI of Meshtika. It is mostly similar to Blender,
but involving changes in Themes section etc. It only has the
save_up() method as the user would like to experience with the
same settings for the upcoming sessions as well. We should note
that as our tool does not provide any account/profile creation, no
User class in the system either, these settings are kept in the tool
itself,i.e. the installed programme, rather than actually being tied
to the user.

TextEditor This is one of the main parts of Meshtika, as its goal is to provide
a development environment. TextEditor class holds the methods
similar to other famous multi-functional text editors, that
developers tend to use. It lets the developers to make use of
actions such as higlighting, line numbering, find&replace
mechanism and of course code completion, on Text objects. This
class is not solely composed of Text objects, but rather performs
on them as if the Text class is the part and TextEditor class is the
whole, as this can be driven from the given aggregation.

Text Text class is the script that the user writes on the TextEditor. The
user can make use of the methods of TextEditor to manipulate the
Text. We should point out that a Text Editor class can obtain more
than one Text objects, thanks it its tab mechanism, but can works,
perform its methods, on only one at a time.

SsDebugger SsDebugger class represents a classic step-by-step debugger for
Python, including the methods step(), next(), continue() and kill().
With the help of these methods the user can debug his/her script,
i.e. the current Text object, line-by-line or block-by-block.

Canvas Canvas class demonstrates the 3d View space of the tool. The user
will be provided by the visual output of his/her script, i.e. the
current Text Object on the Canvas. Whenever a script is run, the
parameters belonging to it will be shown on the canvas and the
user will be able to change them to see their effects on the visual
output immediately, by making use of addParams() and
clearParams().

DGP_Specific_API Built-in DGP related functions and data structures in API.

VisualDebugger Other than the SsDebugger, Meshtika supplies its users also a
VisualDebugger class. Users can make use of this class by calling
the VisualDebugger module inside the DGP_Specific_API, in their
scripts, and the visual output, corresponding to the position where
the module is called, will appear with appropriate colors and
labels. This lets the user to keep track of visual changes easily.

34

SRS Documentation of Meshtika DGP Toolkit

Mesh Mesh class is actually the minimalist output a DGP specialist will
drive. So, it is safe to assume that whole script, the Text, will be
written in order to create Meshes and perform distinct algorithms
related to them via benefiting from the DGP_Specific_API of
Meshtika. The necessary attributes such as its vertices, edges and
faces are kept as the actions, related to the algorithms, will be
performed on these.

Driver Handles the algorithm phases, provides the output to canvas.

Profiler Developing algorithm requires consideration of time and memory
usage. Although, both of these can be estimated hypothetically,
Meshtika aims to give its users to performance measurements in a
real world environment. The profiler class has methods to inspect
time and memory usage of the implemented algorithm as well as
its subroutines. Moreover, Profiler plots a chart of the running
time of the algorithm for meshes with different sizes, so user can
observe time complexity of the algorithm.

5. References
[1] Blender.org - Home of the Blender project - Free and Open 3D Creation Software. (n.d.). Retrieved
January 13, 2016, from https://www.blender.org/

[2]OpenGL 2.1 Reference Pages. (n.d.). Retrieved January 13, 2016, from
https://www.opengl.org/sdk/docs/man2/

[3]Blender Manual Contents¶. (n.d.). Retrieved January 13, 2016, from
https://www.blender.org/manual/

35

https://www.blender.org/
https://www.blender.org/manual/
https://www.opengl.org/sdk/docs/man2/

	1. Introduction
	1.1 Problem Definition
	1.2 System Overview
	1.2.1 Meshtika API
	1.2.2 Meshtika IDE

	1.3 Definitions, acronyms, and abbreviations
	1.4 Assumptions and dependencies

	2. Overall description
	2.1 Product functions
	2.1.1 Use-case model survey
	2.1.2 Actor survey

	2.2 Interfaces
	2.2.1 User Interfaces
	2.2.2 Hardware Interfaces
	2.2.3 Software Interfaces

	2.3 Constraints

	3. Specific requirements
	3.1. Functional Requirements
	3.1.1. Change User Preferences
	3.1.2. Develop Algorithm
	3.1.3. Use DGP Specific API
	3.1.4. Analyze Algorithm
	3.1.5. Debug Step by Step
	3.1.6. Use Visual Debugger
	3.1.6. Profile Algorithm
	3.1.7. Reference Output Comparison
	3.1.8. Plug-in Support
	

	3.2 Nonfunctional Requirements
	3.2.1 Usability
	3.2.2 Reliability
	3.2.3 Performance
	3.2.4 Supportability

	4. Data Model and Description
	5. References

