MIDDLE EAST TECHNICAL UNIVERSITY
COMPUTER ENGINEERING
DEPARTMENT

SOFTWARE DESIGN
DESCRIPTION

Group Name : Smeshers
Group Members : Ugur Yanikoglu

Furkan Odluyurt
Dicle Ayzit
Emre Baris

Advisors : Yusuf Sahillioglu
Caglar Seylan

Design Description of Digital Geometry
Processing

Toolkit,
Meshtika.

VIESHTICA

Smeshers Software Design Description of Meshtika

1.INTRODUCTION

1.1 Purpose

1.2 Scope
1.3 Intended Audience

1.4 Definitions, Acronyms & Abbreivations
1.5 Date of Issue and Status
1.6 Issuing Organization
1.7 Authorship
1.8 Design Languages
1.9 Context
1.10 Summary
2. REFERENCES
3. DESIGN CONCERNS
4. DESIGN VIEWPOINT
4.1. Introduction
4.2 Context Viewpoint
4.2.1 Use Case Diagram and Use Case Definitions
4.3 Composition Viewpoint
4.3.1. Functional (Logical) Decomposition Viewpoint
4.3.2. Run-Time (Physical) Decomposition Viewpoint
4.4 L oqical Viewpoint
4.5 Dependency Viewpoint
4.6 Information Viewpoint
4.7 Patterns Use Viewpoint
4.8 Interface Viewpoint
4.9 Structure Viewpoint
4.10 Interaction Viewpoint
5.DESIGN RATIONALE

Smeshers Software Design Description of Meshtika

Table of Figures

iU 7

QU 2 o e D

iU 3 e 11
FIQUIE 4 o 13
FIQUIE B i 14
iU B e 15
List of Tables

JLIE= o[4

Smeshers Software Design Description of Meshtika

1.INTRODUCTION

1.1 Purpose

The purpose of this document is to describe and visualize the architecture and
system design of Meshtika by using different viewpoints.

The purpose of this document is to describe the software system which is
planned to meet the needs specified in Software Requirements Specification
document. This document will be reference to the coding phase.

1.2 Scope

This document includes a structural overview of all data, modules and
interfaces. Besides that , it covers design of each modules in detail through giving
information about the comprehensive software architecture. A bunch of design views
will be presented in order to support the design and development process. This
documentation will be a guide during the entire implementation phase.

1.3 Intended Audience

The intended audience for this document is the group members of the
Smeshers and stakeholders of the project.

The stakeholders of this project are :

Team Leader of the project - Caglar Seylan
Supervisor of the project - Yusuf Sahillioglu

The Project Managers - Attila Ozgit , Emre Akbas
The Evaluation Committee of the CENG DEMO Day

1.4 Definitions, Acronyms & Abbreivations

DGP Digital Geometry Processing

GUI Graphical User Interface.

API Application Programming Interface

IEEE Institute of Electrical and Electronics Engineers.
IDE Integrated Development Environment

Smeshers Software Design Description of Meshtika

SRS Software Requirements Specification
SDD Software Design Description
STD Software Test Document

WYSIWYI What You See is What You Implemented

SSD Step by Step Debugger (Software Component)
Mesh A data structure in Computer Graphics
Output Anything written to Info is output

Table 1: Table of Abbreviations

1.5 Date of Issue and Status

The date of issue of the initial version of this document is 03.06.2016.
Changes may be done with respect of the stakeholders’ or open source
communitites’ will in the future.

1.6 Issuing Organization

The issuing organization of this project is Middle East Technical University
Computer Engineering Department. The applicability of this project will be evaluated
by them.

1.7 Authorship

All sections in this document is written by group members of Smeshers. The
authors of this document are responsible for updating it.

1.8 Design Languages

Unified Modeling Language (UML) is used to represent the design properties
of the Meshtika System.

1.9 Context

This document contains the software design descriptions for BISIM system.
This document is prepared according to “IEEE Standart for Information Technology -
Systems Design - IEEE 1016 2009”.

Smeshers Software Design Description of Meshtika

This document releases the details of how Meshtika system is to be built. The
details are represented through graphical notations such as use case models, class
diagrams, viewpoints and other supporting design information.

1.10 Summary

This documentation is intended for anyone who wishes to understand how
software Meshtika was designed internally. All system constraints, functionalities and
elements included in the system are explained in detail. By using this documentation,
developers can collaborate in order to shape the project to the final specification or
by using this document, they can extend the boundaries of the system for further
demand.

The intoduction about this documentation and the system have been made in

previous sections. Mentioned representations of the system’s design , design
concerns and design rationale will be explained in next sectios respectively.

2. REFERENCES

e |EEE 10162009, IEEE Standard for InformationTechnology-Systems
Design-Software Design Descriptions

e Software Requirements Specification Document for Meshtika (2015), from
http://senior.ceng.metu.edu.tr/2016/smeshers/

e Software Design Description Document for Meshtika (2016), from
http://senior.ceng.metu.edu.tr/2016/smeshers/

e Blender Manual Contents (n.d.). Retrieved January 13, 2016, from
https://www.blender.org/manual/

e Blender.org - Home of the Blender project - Free and Open 3D Creation
Software. (n.d.). Retrieved January 13, 2016, from https://www.blender.org/

http://senior.ceng.metu.edu.tr/2016/smeshers/
http://senior.ceng.metu.edu.tr/2016/smeshers/
https://www.blender.org/manual/
https://www.blender.org/

Smeshers Software Design Description of Meshtika

3. DESIGN CONCERNS

There are several design concerns of the system. They will be mentioned
respectively with their possible solutions in this section.

One of these concerns is the problem related to integration of the Meshtika
API. As it is known, Meshtika is based on Blender. It is possible to make addons for
Blender. However , integrating a module to existing application is quite a problem.
This problem can only be solved by changing the initialization scripts of the existing
program and recompling whole system.

Another concern is the performance of the system and algorithms; they
should give real time responses to the users. Time intervals between actions and
their responses must not pass the limitations. The bugs inside a huge application
that affect the performance is a big problem for only one team containing 4 members
but these bugs will be tried to fixed as far as possible. The DGP algorithms will be
implemented directly from their respective papers and they will be optimized as far
as possible.

Yet another concern is adding and removing GUI components to develop
easy to use application. It is expected to solve this issue only modifying python side
of the Blender. However, some components and functionalities is bounded in the
C/C++ side of the application. To add new functionalities , similarly , the new
functionality have to be bounded to related functionality in C/C++ side. As itis seen,
the developers of this project have to examine the C/C++ side of the application as
well since this is only solution for that particular problem.

4. DESIGN VIEWPOINT

4 1. Introduction

In this section of the sdd, following nine viewpoints will be provided with
detailed description and diagrams.

Context Viewpoint
Composition Viewpoint
Logical viewpoint
Dependency viewpoint

Smeshers Software Design Description of Meshtika

Information viewpoint
Patterns use viewpoint
Interface viewpoint
Structure viewpoint
Interaction viewpoint

4.2 Context Viewpoint

Context viewpoint consists of the relationships, interactions and dependencies

between the enviorement and the system. Use case diagram and use case
descriptions are presented to give a general sense of the context viewpoint.

4.2.1 Use Case Diagram and Use Case Definitions

Change User
Preferences

Develop Algorithm (in
Code Editar)

User Use Meshtika API

Debug Algorithm

Profile Algorithim

Figure 1 : Use Case Diagram of Meshtika

Smeshers Software Design Description of Meshtika

Use-case Name Definition

Develop Algorithm Develop a custom DGP algorithm in the environment.
IDE offers a robust text editor for this purpose

Debug Algorithm Detect the logical errors the custom algorithm may
have by classic step-by-step debugging technique

Use Meshtika API Develop a custom DGP algorithm in the environment
by an offered, easy-to-use API

Change User Preferences | Users of Meshtika will have the power of customizing
the platform, respecting to certain limits, via user
preferences. They can perform actions, such as
personalizing the theme of text editor, installing/
enabling/disabling add-ons, which are the
correspondents of classic plug-ins in the scope of

Blender
Use WYSIWYI Analyzing algorithm by changing its parameters
Profile Algorithm Observing time and space complexities of algorithms

Table 2 : Use Case Definitions of Meshtika

The elaborated descriptions, including actors, triggers, alternative scenarios,
pre and post conditions for each use case was already given in the Software
Requirement Specification Document.

4.3 Composition Viewpoint

In this section, project components and connections between these
components are explained. To understand the composition viewpoint of the system,
component and deployment diagrams are provided.

4.3.1. Functional (Logical) Decomposition Viewpoint

The first viewpoint is the functional (logical) decomposition viewpoint. To represent
the outcome of applying the logical viewpoint, UML component diagram can be
made use of, since component diagrams let the designers model the internal
structure of the system regarding the major components.

Smeshers Software Design Description of Meshtika

As displayed in the component diagram below, a component is what is
required to execute a stereotype function, such as executables, documents,
database tales, library files, etc. Moreover, the components require interfaces to be
able to interact with one another. For Meshtika, the major internals are Code Editor,
GUI, Meshtika API, WYSIWY!I, Profiler and Debug components, since all these are
necessary to keep the system active and responding. More detailed explanation of
the interfaces will be given in the Interface Viewpoint section, referring to this
component diagram.

{C
Code Editor
=
GUI { C |
Q import bpy
Ny
Q import meshtika
1
(o) L& -
Python),
6'
7 ﬂ ki Meshtika API
WYSIWYI
1
9 .
Blender Data Structures

Profiler

Figure 2: Component Diagram of Meshtika

To make things clear, here are the brief explanations of the major
components shown in the diagram above.

GUI is the user interface of the program. It actually includes the Code Editor,
the Info Space, the 3D View and the WYSIWYI environment.

Smeshers Software Design Description of Meshtika

Code Editor is the text editor, where the developers are expected to write their
scripts and manipulate them via the features provided by the Code Editor.

Info Space is the part where the log of the actions taken in Code Editor and
non-visual result of run script is displayed.

3D View is the part to visualize the triangular meshes.

WYSIWYI is the part where a list of registered parameters in the script in the
code editor is displayed and it is possible to alter these parameters, without altering
the script itself and explore their outcomes, such as the change in resulting mesh or
the numeric value output in the log.

Meshtika API is the package provided to the users, which is intended to make
DGP development more comfortable, as several famous and state-of-the art papers’
algorithms implementations are integrated. This can be easily imported in the script
in the code editor, and be made use of.

Debugger is a classic debugger, letting the developer debug his/her code
written in the code editor with classic debug functions provided.

Profiler is the component that provides the relation between the used
recources and time as a graphical outcome.

4.3.2. Run-Time (Physical) Decomposition Viewpoint

The second viewpoint that is applied in the scope of composition viewpoint is
the run-time (physical) decomposition viewpoint, which captures the physical (often
hardware) components in the system and how these components are
interconnected. There is also the deployment viewpoint, which captures how logical
components are mapped onto physical ones. By the help of UML deployment
diagram, it is possible to combine the deployment and physical decomposition
viewpoints, since deployment diagrams display the execution architecture of
systems, representing the deployment of software artifacts, where artifacts refer to
concrete elements in the physical world, as an outcome of development and
deployment. Thus, the deployment diagram of Meshtika and a detailed description of
it is given below.

10

Smeshers Software Design Description of Meshtika

<<PC Linux>> =<PC Windows>>

Meshtika Meshtika

Figure 3: Deployment Diagram of Meshtika

As Meshtika is a stand-alone project, that does not require any interaction or
dependency with the outside it can be adopted in PCs that is using either one of the
operating systems: Linux and Windows.

4.4 Logical Viewpoint

The logical viewpoint describes the logical structure and the distribution of
responsibilities functionality of a system by means of a network of interacting logical
components that are responsible for a set of functions.

The class diagram is displayed in Software Requirement Specification
Document of Meshtika to serve the insight of this viewpoint.

4.5 Dependency Viewpoint

The dependency viewpoint specifies the relationships of interconnection and
access among entities. Execution ordering and data flow between shared
information are included in this viewpoint. The component diagram given in the
section 4.3.1 is an instance of this kind of viewpoint. It shows the relationships and
provides an overall picture of subjects in order to help maintainers resolve the issues
with the system. This can be done by examining every component and the relations
between them.

To elaborate thses dependecies, here are given the explanations regarding
the components and their relations.

11

Smeshers Software Design Description of Meshtika

First of all, Code Editor is actually a part of GUI of the program, therefore it is
represented as Code Editor providing an interface to the GUI in the component
diagram. If we get mor einto detalil, it should be stated that the results of the actions
performed in the Code Editor, such as running the script, will affect other parts of the
GUI. For example, errors will pop up in the Info Space of the GUI and resulting mesh
(if there will be any) will appear in the 3D view part of GUI.

Python provides the Blender/Python API (bpy) to Blender, which we also
made use of extensively during our development. It makes it possible to access
Blender’s Python side source code and let it be manipulated by the developers,
which is how we mostly altered the GUI of Blender.

Both bpy and meshtika API, which is the API provided for Meshtika users
including several paper implementations to make DGP development easier for them,
can be imported inside the script in the Code Editor by the developer. It should be
noted that Meshtika APl makes use of the data structures of Blender, such as mesh.

WYSIWYI represents the registered parameters, which is provided by the
Code Editor. The alteration in WYSIWYI can be tracked in GUI, either info space or
3D view.

Debugger receives the script in code editor and traverses it. It outputs the log
in Info Space of GUI.

Profiler also receives the script in the code editor and represents a graphical
output in GUI.

4.6 Information Viewpoint

The ultimate purpose of any information system being to manipulate data, the
information viewpoint describes the way an architecture stores, manipulates,
manages and distributes information. Meshtika is not a system that stores any user
related data or manipulation of it, though it responds to session related data as any
IDE would, such as keeping the current script in its data system and make use of it
while running script, making use of profiler and debugger. Moreover, with its
integrated WYSIWY| environment, it again accesses the corresponding sessions’
script’s vital arguments to be manipulated over.

12

Smeshers Software Design Description of Meshtika

4.7 Patterns Use Viewpoint

In this viewpoint, design patterns are discussed. Meshtika embraces
Model-View-Controller Pattern.

This model divides the system into three interconnected parts, so that
information exchanged between the components of the system can get
understandable by the user. The GUI part of the system is the view component of
this pattern. Data structures provided by Blender are the model part of the system.
The Meshtika API including the user-friendly implementations of famous algorithms
served to the user is the controller part of the system.

4.8 Interface Viewpoint

In this section, the main GUI of Meshtika is provided, which includes from left
to right, Info Space, Code Editor, 3D View and WYSIWY!I parts, respectively.

Figure 4: main GUI of Meshtika

13

Smeshers Software Design Description of Meshtika

There is just one other user interface that the user might deal with which is the

user preferences screen, taht gives the user the freedom to select the features

he/she wants in the scope of file type, interface an so on. User Preference screen is

shown in the figure below.

Figure 5: User Preferences Screen of Meshtika

4.9 Structure Viewpoint

Making a detailed structure viewpoint here would be redundant since there
many diagrams showing the structure of the system, such as in the section 4.3.1
component diagram and class diagram in SRS.

4.10 Interaction Viewpoint

This viewpoint releases the interaction information between the system

entities and the actors. Interaction overview diagram is provided to understand this
viewpoint clearly.

14

Smeshers

i

ref J

Change User Preferences

Run Script

Developing in Code Editor

4

et /
L=/

Use Meshiika API

Figure 6: Interaction Overview Diagram of Meshtika

Software Design Description of Meshtika

ref ;‘
/

Make Use of WYSIWYI

Profile Algorithm

Debug Algorithm

The ref frames in the interaction overview diagram are referenced to the use

cases of the system, about which you can find the detailed information in SRS

document of Meshtika.

It is important to note that Meshtika API can be used during the development

phase. According to the script’s being run without problems or not, the user is then

able to debug the algorithm and get back to development again or can go on with the

usage of WYSIWYI and profiling.

5.DESIGN RATIONALE

Design choices are created with respect to the specific requirements
mentioned in SRS document and other significant features so that system can

respond the required scenarios with specified cases. It can be updated according to
changing requirements of the stakeholders and the users.

With the structure of this system, updates and upgrades will not cost much in
cases of funds, efficiency and time.

15

