_ MIDDLE EAST TECHNICAL UNIVERSITY
Y COMPUTER ENGINEERING
’ DEPARTMENT

SOFTWARE TESIT
DOCUMENT

Group Name : Smeshers
Group Members : Ugur Yanikoglu

Furkan Odluyurt
Dicle Ayzit
Emre Baris

Advisors : Yusuf Sahillioglu
Caglar Seylan

Tests of the components of Digital
Geometry

Processing R\ /$
Toolkit, Meshtika.

MESHITIKA

Smeshers

1. INTRODUCTION
1.1 Document identifier

1.2 Scope

1.3 Definitions, Acronyms & Abbreivations

1.4 References
1.5 Level in the overall sequence

Software Test Document of Meshtika

1.6 Test classes and overall test conditions

2. Details for system test plan
2.1 Test items and their identifiers
2.2 Details of the System Test Design
3. Test management
3.1 Planned activities and tasks
3.2 Environment/infrastructure
4 Test case details
4.1 Testing of Code Editor
4.1.1 Objective
4.1.2 Input(s)
4.1.3 Outcome(s)
4.1.4 Environmental needs

4.1.5 Special procedural requirements

4.2 Testing of Info Space (The Log Space)

4.2.1 Objective

4.2.2 Input(s)

4.2.3 Outcome(s)

4.2.4 Environmental needs

4.2.5 Special procedural requirements

4.3 Testing of Meshtika API (The provided algorithms package)

4.3.1 Objective

4.3.2 Input(s)

4.3.3 Outcome(s)

4.3.4 Environmental needs

4.3.5 Special procedural requirements

4.4 Testing of individual provided algorithms in Meshtika AP

4.4.1 Objective

4.4.2 Input(s)

4.4.3 Outcome(s)

4.4.4 Environmental needs

4.4.5 Special procedural requirements
4.5 Testing of Profiler

4.5.1 Objective

4.5.2 Input(s)

4.5.3 Outcome(s)

4.5.4 Environmental needs

4.5.5 Special procedural requirements
4.6 Testing of Debugger

Smeshers

4.6.1 Objective

4.6.2 Input(s)

4.6.3 Outcome(s)

4.6.4 Environmental needs

4.6.5 Special procedural requirements

4.7 Testing of WYSIWYI environment

4.7.1 Objective

4.7.2 Input(s)

4.7.3 Outcome(s)

4.7.4 Environmental needs

4.7.5 Special procedural requirements

5 System test report details

5.1 Overview of test results

5.2 Detailed test results

5.3 Rationale for decisions

5.4 Conclusions and recommendations

Software Test Document of Meshtika

Smeshers Software Test Document of Meshtika

Table of Figures

iU o 15
FIgUre 2 o e 1O
FIUIE B o s 17
QU 4 o e 18
iU O 19
FIQUIE B o e e 19
iU 7 20
FIQUIE B i o e 21
FIQUIE O & 22
FIgUrE 10 23
List of Tables

JLIE=] o[5
JLIE=] o172 7
JLIE=] o1 T 7
JLIE=] o[8
JLIE=] oL T 8
JLIE=] o[9
JLIE= o 1T 2 9

Smeshers Software Test Document of Meshtika

1. INTRODUCTION

1.1 Document identifier

This document can be used as a reference for the methods used
to test our system, Meshtika and also can be viewed as a user guide, as
users of the application may deal with the same cases while making use
of our GUI and API.

1.2 Scope

This document will give information about the test cases by
explaining architecture, subject and constraints of the test plans.
Furhermore, the results that are are achieved from our experiments will
be shown seperately to show how well the system is handling the
situations that may occur in real world. In addition, the scope of the
document includes the strategies and techniques that are needed to
conduct those test cases.

1.3 Definitions, Acronyms & Abbreivations

DGP Digital Geometry Processing

GUI Graphical User Interface.

API Application Programming Interface

IEEE Institute of Electrical and Electronics Engineers.
IDE Integrated Development Environment

SRS Software Requirements Specification

Smeshers Software Test Document of Meshtika
SDD Software Design Description
STD Software Test Document
WYSIWYI What You See is What You Implemented
CE Code Editor (Software Component)
Mesh A data structure in Computer Graphics
Output Anything written to Info is output

Table 1: Table of Abbreviations

1.4 References

IEEE 10162009, IEEE Standard for InformationTechnology-Systems

Design-Software Design Descriptions

e Software Requirements Specification Document for Meshtika (2015), from
http://senior.ceng.metu.edu.tr/2016/smeshers/

e Software Design Description Document for Meshtika (2016), from
http://senior.ceng.metu.edu.tr/2016/smeshers/

e Blender Manual Contents (n.d.). Retrieved January 13, 2016, from
https://www.blender.org/manual/

e Blender.org - Home of the Blender project - Free and Open 3D Creation

Software. (n.d.). Retrieved January 13, 2016, from https://www.blender.org/

1.5 Level in the overall sequence

The system is not a part of any larger system but a small scale
one, as we tried to achieve by scaling down the platform we build

Meshtika on, which is Blender. Therefore, only one level of test planning

is enough for this system and it is the test of the product itself.

http://senior.ceng.metu.edu.tr/2016/smeshers/
http://senior.ceng.metu.edu.tr/2016/smeshers/
https://www.blender.org/manual/
https://www.blender.org/

Smeshers Software Test Document of Meshtika

1.6 Test classes and overall test conditions

For this level of testing, whole system is needed to be considered.
Since the system should be tested to validate and verify the features of
itself, the functionailities which were described in SRS will be tested.
Hence, testing for this system should be conducted to meet its
requirements. Test cases are divided into main test classes. Those
classes are listed below:

-Manual testing
This method is used for Text Editor and Info Space to see if any
errors happen, if all properties working correctly.

-Black Box Testing
Used for testing the algorithms provided in the Meshtika API, to
see if the outcomes meets the expected ones.

2. Details for system test plan

2.1 Test items and their identifiers

We have built an integrated developing platform that does not
include any harware components. Its software components that are
tested defined in the next sections in detail. In this project, we use black
box testing methods. We will test the use cases and features that are
defined in the SRS document by generating different test scenarios.
Then we decided to outputs according to pass/fail criterias. And at some
point we also use bare eyes to test some conditions, as we are dealing
with a branch of Computer Graphics. The contents of test approaches
will become more clear in following sections.

Smeshers Software Test Document of Meshtika

2.2 Details of the System Test Design

For each test case we prepared tables to give details of each test
procedure.

Test Case ID TO1

Test Case Name | Testing of Code Editor

Approach Perform development on Code Editor, try to make
use of its properties and run the script

Pass/Fail Criteria | Code editor needs to properly suffice its
properties and does not get stuck during
developing

Deliverables Possibly the result on 3D View

Table 2: Test Case 1

Test Case ID T02

Test Case Name | Testing of Info Space (The Log Space)

Approach Perform on Code editor and catch the
corresponding logs on Info Space

Pass/Fail Criteria | The log should meet the actions taken the
developer

Deliverables Its log tiself

Table 3: Test Case 2

Smeshers

Software Test Document of Meshtika

Test Case ID

T03

Test Case Name

Testing of Meshtika API (The provided algorithms
package)

Approach

Try to import any module from meshtika inside
the script

Pass/Fail Criteria

It should be able to import and be used inside the
script with no error meddling

Deliverables

Table 4: Test Case 3

Testing of Meshtika API’s individual algortihms will actually divide
itself into many parts, as we needed to test every algorithm we
integrated into it, but this table will give the general approach and its
details we took while performing those individual tests.

Test Case ID

T04

Test Case Name

Testing of individual provided algorithms in
Meshtika API

Approach

Specific inputs given and checking the output
mesh/numeric value if it meets the expected
outcome (pointed by the supervisor and the
corresponding paper)

Pass/Fail Criteria

It should match the expected output
mesh/numeric value

Deliverables

Result mesh on 3D View or numeric value on Info
Space

Table 5: Test Case 4

Smeshers

Software Test Document of Meshtika

Test Case ID

T05

Test Case Name

Testing of Profiler

Approach

Comparing the resource and time parameters of
top command in terminal with the output of
profiler

Pass/Fail Criteria

If the graphic that the profiler provides meet the
parameters of top command, it works
appropriately.

Deliverables Graphic displaying memory used vs time passed
Table 6: Test Case 5
Test Case ID T06

Test Case Name

Testing of Debugger

Approach

Checking if the basic deugger functions, such as
run, next, break etc., work properly

Pass/Fail Criteria

The debugger functions should correspond to the
expected actions during the traversal of the script

Deliverables

Real-time debug log

Table 7: Test Case 6

Smeshers Software Test Document of Meshtika

Test Case ID TO7

Test Case Name | Testing of WYSIWYI environment

Approach Comparing the result of manual changes of
parameters in the code editor itself with the result
of making the changes in WYSIWYI environment.
Also, making sure that all registered parameters
appear in the environment.

Pass/Fail Criteria | If the results match and there is no problem of
accessing the registered parameters in WYSIWY!I
environment, the test is passed.

Deliverables -

Table 8: Test Case 7

3. Test management

3.1 Planned activities and tasks

The test activities considered for this system is listed below.
- Unit testing

- Integration testing

- Validation testing

Among those test activities, unit testing must be done first, then
integration testing and finally validation testing. In unit testing phase,
each component of the system must be tested separately. Unit testing
must be done again and again until each unit succeeds in those tests. In
this way, we make sure that the problem does not arise from the units
when something wrong occurs during other test activities. After all units
pass the tests successfully, integration test activity must be done. In this
one, units are added to the system one by one. When one unit is added

10

Smeshers Software Test Document of Meshtika

to the system, this merged version will be tested and if it passes the test,
new one is added and this procedure will be carried out until all units are
merged together. After integration test is over,validation test activity must
be conducted. Therefore, the results of tests will be compared with those
requirements in validation test.

3.2 Environment/infrastructure

Our project is developed on Ubuntu 14.04 and our programming
language preference is mostly Python and we needed to deal with C on
the way as well. We have only one test environment, which is Meshtika
itself, by also making use of Blender’s basis.

4 Test case details

4.1 Testing of Code Editor

Actually making use Code Editor during development and try to
break by making use of its promised properties. Eye inspection mostly
for checking properties.

4.1.1 Objective

To make sure that Code Editor meets its requirements specified in
SRS.

4.1.2 Input(s)

Any Python script.

11

Smeshers Software Test Document of Meshtika

4.1.3 Outcome(s)

Assuming no errors caused by the script itself, no errors actually

happened beacuse the editor itself. Also cecking if an outcome
supposed to appear on 3D view.

4.1.4 Environmental needs

The Meshtika application needs to be built correctly with its
provided dependencies.

4.1.5 Special procedural requirements

The user interface should be running.

4.2 Testing of Info Space (The Log Space)

We need to make sure that we get required explanations
corrsponding to the actions taken in Code Editor, as in any IDE.

4.2.1 Objective

To make sure that the log displayed in Info space matches the
actions taken in Code Editor.

4.2.2 Input(s)

Any Python script in Code Editor and running it.

12

Smeshers Software Test Document of Meshtika

4.2.3 Outcome(s)

Displayed possible wirtten outcomes, any errors or exceptions
caused by the script itself.

4.2.4 Environmental needs

The Meshtika application needs to be built correctly with its
provided dependencies.

4.2.5 Special procedural requirements

The user interface should be running.

4.3 Testing of Meshtika API (The provided algorithms package)

We need to make sure that the developers using our platform can
make use of the APl we are providing to boost the user experience and
make our contribution work as well.

4.3.1 Objective

To check if one can import any algorithm from the API.

4.3.2 Input(s)

None. The APl is already integrated into the platform. The user just
needs to make use of this snippet.

from meshtika import *

13

Smeshers Software Test Document of Meshtika

4.3.3 Outcome(s)

- (No errors should be displayed in the log.)

4.3.4 Environmental needs

The Meshtika application needs to be built correctly with its
provided dependencies.

4.3.5 Special procedural requirements

The user interface should be running.

4.4 Testing of individual provided algorithms in Meshtika API

We also definitely have to make sure that the algorithms we
provided produce specified outcomes, which are specified in the
corresponding academic papers and also via the supervisor.

4.4.1 Objective

The objective is valid for every algorithm; make sure they are
providing expected results.(meshes/numeric values)

14

Smeshers Software Test Document of Meshtika

4.4.2 Input(s)

For each algortihm we provide a suitable non-manipulated triangle
mesh, such as bunny, man and centour. They are provided below,
respectively.

Figure 1: Triangular bunny mesh

15

Smeshers

Figure 2: Triangular man mesh

Software Test Document of Meshtika

16

Smeshers Software Test Document of Meshtika

Figure 3: Triangular centour mesh

4.4.3 Outcome(s)

Resulting manipulated mesh displayed on 3D view, including
corresponding displaying method, such as mesh coloring, sphere adding
etc.

For Average Geodesic Distance, Curvature and Fathest Point
Sampling algorithms, numeric values are returned, though in order to
inspect these better, we used mesh coloring and adding sphere to
resulting points methods are used. The outcoming visuals are shown
below for each algorithm.

- Average Geodesic Distance

17

Smeshers Software Test Document of Meshtika

Mesh coloring according to the ranges of average geodesic
distance values, which highlights the differences between the densities
of vertices along the mesh, is used for a better inspection of the
outcome.

Figure 4: Result bunny mesh of average geodesic distance algorithm
- Biharmonic Distance

Only numeric value is returned and tested if they stay in an
expected range for several mesh inputs.

- Curvature
Mesh coloring according to the ranges of curvature values, which

highlights the differences between most and least curved faces of the
mesh, is used for a better analysis of the outcome.

18

Smeshers Software Test Document of Meshtika

Figure 5: Result 1 man mesh of curvature algorithm

Figure 6: Result 2 man mesh of curvature algorithm

- Dijkstra

Only numeric value is returned and compared with expected
outcomes of famous meshes.

19

Smeshers Software Test Document of Meshtika

- Farthest Sampling Point
Sphere meshes are added at the points, which are found as the
farthest sampling points, to be able to visually receive the outcome of the
algorithm. The number of points is identified as a paramter of the
algorithm’s own function, which will be determined by the user in his/her
own development, as you can spot the difference between the two
following output meshes.

Figure 7: Result man mesh of farthest sampling point algorithm

20

Smeshers Software Test Document of Meshtika

Figure 8: Result centour mesh of farthest point sampling algorithm

- Geodesic Distance
Numeric value is returned and cross-checked with expected values
for famous meshes.
- Iterative Closest Point

Visual inspection is used to see if matching meshes connect to
each other, such as using two of the same bunny meshes.

21

Smeshers Software Test Document of Meshtika

Figure 9: Result bunny mesh of iterative closest point algorithm

- Shape Diameter Function

Visual demonstration of the rays sent from the particular face to
compute the Shape Diameter Function’s return value(numeric) is added.

22

Smeshers Software Test Document of Meshtika

Figure 10: Result horse mesh of shape diameter function algorithm

4 4.4 Environmental needs

The Meshtika application needs to be built correctly with its
provided dependencies.

4.4.5 Special procedural requirements

The user interface should be running.

4.5 Testing of Profiler

It is needed to be assured that the outcome of the profiler, which is
a graphic estimating used memory versus the passed time, provides a
correct one.

23

Smeshers Software Test Document of Meshtika

4.5.1 Objective

To make sure that profiler provides a reasonable graphical output.
This is performed by comparing the resouces and time values returned
by top command in terminal.

4.5.2 Input(s)

The script itself in the Code Editor.

4.5.3 Outcome(s)

Memory versus Time graphical result.

4.5.4 Environmental needs

The Meshtika application needs to be built correctly with its
provided dependencies.

4.5.5 Special procedural requirements

The user interface should be running.

4.6 Testing of Debugger

Basic functionalities of any debugger, such as run, next, break
etc., should be able to be performed.

24

Smeshers Software Test Document of Meshtika

4.6.1 Objective

It is expected that debugger meets the requirements and works in
the way that every basic debugger does.

4.6.2 Input(s)

The script in the Code Editor.

4.6.3 Outcome(s)

The corresponding debug log to the called debug functions.

4.6.4 Environmental needs

The Meshtika application needs to be built correctly with its
provided dependencies.

4.6.5 Special procedural requirements

The user interface should be running.

4.7 Testing of WYSIWYI environment

As WYSIWYI is the environment holding the registered parameters
of the script and makes it possible to manipulate them easily, we need to
make sure it performs these accordingly.

25

Smeshers Software Test Document of Meshtika

4.7.1 Objective

To check if all registered parameters appear in WYSIWYI
environment and the result of mainpulating them in that environment
provides the same outcome with manipulating them manually inside the
script in the Code Editor.

4.7.2 Input(s)

Parameters registered by the developer in the script.

4.7.3 Outcome(s)

The alterable list of these registered parameters and when a
chane is made, possibly corresponding visual change in 3D View or
numeric value cahnge in result.

4.7.4 Environmental needs

The Meshtika application needs to be built correctly with its
provided dependencies.

4.7.5 Special procedural requirements

The user interface should be running.

26

Smeshers Software Test Document of Meshtika

5 System test report details

5.1 Overview of test results

System passed all the tests conducted successfully by now.

5.2 Detailed test results

Code Editor PASSED
Info Space PASSED
Meshtika API (as the PASSED
whole package)

Average Geodesic PASSED
Distance

Biharmonic Distance PASSED
Curvature PASSED
Dijkstra PASSED
Farthest Sampling Point | PASSED
Geodesic Distance PASSED
lterative Closest Point PASSED
Shape Diameter Function | PASSED
Profiler PASSED
Debugger PASSED
WYSIWYI environment PASSED

27

Smeshers Software Test Document of Meshtika

5.3 Rationale for decisions

Black box testing technique and visual inspection are used for the
tests.

5.4 Conclusions and recommendations

In this document, definition of test cases is given so that making
sure that system is working properly and meeting the requirements. The
system is expected to pass all those test cases in order to be able to be
ready to use.

28

