
Project NAR: Combined SRS-SDD-Test Document 
 

1. System Requirements 
 

a) Functional Requirements 
 

ID Requirement Status 

1 Users will be able to register to the system. OK 

2 Users will be able to associate several computers with their 
users. 

OK 

3 Users will be able to upload files to the system. OK 

4 Users will be able to download previously uploaded files from 
the system. 

OK 

5 Users will be able to delete previously uploaded files from the 
system. OK 

6 Users will be able to create directory structures in the system. OK 

7 Users will be able to traverse directory structures in the 
system. 

OK 

8 Users will be able to list files and directories in the system. OK 

 
    b) Non-functional Requirements 
 

ID Requirement Status 

9 UI will be easy to use and understand. OK 

10 System will provide %99 expected availability for files. IN PROGRESS 

11 System will be fair to users that the users that provide 
more will get more service. IN PROGRESS 

12 System will not corrupt files. OK 

13 System will not interrupt user’s regular workflow and 
use minimal resources. OK 

 
 



 
    c) Project Plan and Scope 

Our product will provide free, secure, private and 
limited-by-contribution file cloud storage system to its users. Main problem 
that we want to solve is centralization of file clouds. We want to create a 
system that is not traceable by any company or group and secure and 
unlimited by design. System will create a collective storage by using each 
user’s own hard disk area.  

Software will consist of following functionalities: 
1. Register to system : This functionality will register user to the system. 

User will be entering a username and password (this password will not 
be stored anywhere). After entering username and password system 
will be asking monthly bandwidth and quota limit to registered machine. 

2. Check  Status : User will be able to check his/her current machine 
status which will contain Machine id, server id, server port, nar folder 
and file folder. 

3. Push file : Upon push request, the file will be encrypted by a key that is 
known only to the user and will be fragmented into little pieces. The 
user will ask for a list of peers from the central entity to push his pieces 
to them. The central entity will coordinate the connections between 
peers. To provide high availability of files, the central entity will create 
redundancy by instructing peers to share pieces with other peers 

4. Pull file : When a user wants to get his files back, he will connect to the 
central entity with his proof of identity and requested file and piece id. 
The central entity will provide a connection with a peer that has the 
requested piece of file. After connection, the piece will be downloaded 
directly from the peer. When the user collects all pieces of a file, the 
pieces will be defragmented and decrypted. The original file will be 
available to the user. 

5. Delete file : If user decides to delete their files from system, central 
entity will search machines for which they have the parts of the file. If 
those machines are active, central entity will send delete request to 
them and remove chunk’s status with that machine in database. If 
machine is not active, deletion operation will be kept at machine’s 
database information and chunk’s connection to machine will be 
removed. When machine becomes active, it will check database for 
deletion operations. If there are, it will proceed them. 

6. Create directory : User will be able to create directories inside the nar 
system. User first will ask central entity for new directory and central 
entity will create it for that user and update database accordingly. 



7. List directories and files : When a user wants to list the files that he has 
in the system, he will ask the central entity to give a list of his files 
providing proof-of-identity. Then, the central entity will return with the 
list of files that user has in the cloud. 

 
d) Use Cases 

 

 
2. System Design 

a. Module Structure 
Project is composed of following modules: 

1. Cryption: Contains classes and functions for RSA 
encryption/decryption and AES encryption/decryption. This is a 
base module. 

2. Logging: Contains a simple logger class. This is a base module. 
3. Messaging: Divided into two submodules: 

a. IPC Messaging: This module contains message type 
classes and related functions that are used for IPC 
communication between UIs and local daemons. This is a 
super-module that uses Low Level Messaging module. 

b. Daemon-Server Messaging: This module contains 
message type classes and related functions that are used 



for daemon-server communication. This is a super-mdule 
that uses Low Level Messaging module. 

4. Socket: Divided into two submodules: 
a. Socket: TCP with SSL wrapper over boost ssl sockets. 

Provides simple interface to exchange data. This is a 
base module. 

b. USocket: RDT over UDP with NAT hole punching 
capability is implemented on this module. This is a base 
module. 

5. File: Wrapper for C++ standard fstream interface. Provides 
simpler functions to interact with files. This is a base module. 

6. Low Level Messaging: Lowest protocol that interacts with 
sockets. Messaging modules use this module as a utility 
module. This is a super-module that uses Socket, JSON and 
Base64 modules. 

7. Database: Built over mysqlcppcon. All database interaction is 
done over this bridge module. This is a base module. 

8. Base64: Provides base64 encode/decode services. This is a 
base module. 

9. JSON: Provides functions to interact with JSON data. This is a 
base module. 

10.Server Global Module: Composed of a single class that stores 
global information about the server status. This is a base 
module. 

11.Server Actions: The main module of server that runs other 
modules to accomplish tasks. Every request is handled by a 
function defined in this module. This is a super-module that uses 
Database, Daemon-Server Messaging, Logging, Cryption 
modules. 

12.Daemon Global Module: Composed of a single class that stores 
global information about the daemon status. This is a base 
module. 

13.Daemon Actions: The main module of daemon that run other 
modules to accomplish tasks. Every request from UI is handled 
by a class defined in this module. This is a super-module that 
uses File, IPC Messaging, Daemon-Server Messaging, Logging, 
Cryption modules. 

14.Daemon Reactive Module: Provides ways to follow server’s 
directions when things need to done. Server sends some 
requests to this module when peer is in passive mode.This is a 
super-module that uses File, Daemon-Server Messaging, 
Logging, Cryption modules. 



15.CLI Module: A simple command line interface to interact with the 
system. This is a super-module that uses IPC Messaging, 
Logging modules. 

 
 
 

b. Source Code Structure 
nar/ 

lib/ 
Cryption/ #Cryption Module 

aes.cpp, aes.h #AES Cryptor 
rsa.cpp, rsa.h #RSA Cryptor 

Exception/ #Exceptions 
Exception.h 

Logging/ #Logging Module 
logger.cpp, logger.h 

Messaging/ #Messaging Module 
messaging_utility.cpp,messaging_utility.h 
MessageTypes/ #Message Classes 

Socket/ #Socket Module 
Socket.cpp,Socket.h #Socket Submodule 
USocket.cpp,USocket.h #USocket Submodule 

base64/ #Base64 Module 
base64.h, base64.cpp 

json.hpp #JSON Module 
cptl.hpp #ThreadPool Library 

narnode/ #Node related mods 
cli.cpp/h, clitasks.cpp/h #CLI Module 
global.cpp, global.h #Daemon Global Mod. 
reactive.cpp, reactive.h #Daemon React. Mod. 
utility.cpp, utility.h #Low Level Messaging 
File/ #File Module 

File.cpp, File.h 
ActiveTask/ #Daemon Actions Mod. 

… #Task Class&Functions 
narserver/ #Server related mods 

Database.cpp/h, dbstructs.h #Database Module 
ServerGlobal.cpp/h #Server Global Module 
peers.cpp/h, sockinfo.cpp/h #Server utilities 

Actions/ #Server Actions Mod. 
… # Task Functions 



c. Component Diagram 
 

Components of narnode CLI: 

 
 

         Components of narnode daemon: 



        Components of narserver: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
                   All components together: 

 
 



d. Deployment Diagram 

 
 
 

3. Testing 
a) Test Plan & Scenarios 

Testing has 3 main phases: Functionality testing(Unit & System tests), Stress 
testing and Penetration testing. 
 

ID Test Description Status 

Functionality Tests 

FU1 AesCryptor class public functions testing. 
[nar/lib/Cryption/aes.h, nar/lib/Cryption/aes.cpp] PASS 

FU2 RsaCryptor class public functions testing. 
[nar/lib/Cryption/rsa.h, nar/lib/Cryption/rsa.cpp] PASS 

FU3 base64 functions testing. [nar/lib/base64/base64.cpp, 
nar/lib/base64/base64.h] PASS 

FU4 Socket class public functions testing. [nar/lib/Socket.h, 
nar/lib/Socket.cpp] PASS 

FU5 
USocket class public functions testing. [nar/lib/USocket.h, 
nar/lib/USocket.cpp] 
 

PASS 



FU6 File class public functions testing. [nar/narnode/File/File.h, 
nar/narnode/File/File.cpp] PASS 

FU7 Low Level Messaging testing. [nar/narnode/utility.h, 
nar/narnode/utility.cpp] (send_message, get_message) PASS 

FS1 Authentication end-to-end testing [DaemonActive, DAS 
Messaging, Server] PASS 

FS2 KeepAlive end-to-end-testing [DaemonReactive, DAS 
Messaging, Server] PASS 

FS3 First Setup Register end-to-end testing [DaemonActive, DAS 
Messaging, Server] PASS 

FS4 Register end-to-end testing [CLI, CDA Messaging, 
DaemonActive, DAS Messaging, Server] PASS 

FS5 Mkdir end-to-end testing [CLI, CDA Messaging, 
DaemonActive, DAS Messaging, Server] PASS 

FS6 
PushFile end-to-end testing [CLI, CDA Messaging, 
DaemonActive, DAS Messaging, Server, SDR Messaging, 
DaemonReactive] 

PASS 

FS7 
PullFile end-to-end testing [CLI, CDA Messaging, 
DaemonActive, DAS Messaging, Server, SDR Messaging, 
DaemonReactive] 

PASS 

FS8 LS end-to-end testing [CLI, CDA Messaging, DaemonActive, 
DAS Messaging, Server] PASS 

FS9 
DeleteFile end-to-end testing. [CLI, CDA Messaging, 
DaemonActive, DAS Messaging, Server, SDR Messaging, 
DaemonReactive] 

PASS 

PENETRATION TESTS 

P1 Low Level messaging attack: Make test for every step. For 
each request flow, break the flow in every step. PASS 

P2 SSL Handshake attack: Disturb SSL with handcrafted packets. PASS 

P3 High Level messaging attacks: Disturb high level protocols in 
all levels. PASS 

P4 Slowloris Attack PASS 
 
 
b) Testing Code Structure 



tests/ #Test main directory 
unit/ #Contains unit tests 

unit.py #Runs all unit tests 
fu1/ 
fu2/ 
... 

system/ #Contains system tests 
system.py #Runs all system tests 
fs1/ 
fs2/ 
... 

stress/ #Contains stress test 
stress.py #Runs all stress tests 
s1/ 
s2/ 
... 

penetration/ #Contains penetration tests 
penetration.py #Runs all penetration tests 
p1/ 
p2/ 
... 


