
COMPUTER ENGINEERING

DESIGN

CENG 491-492

 SENIOR PROJECT

COMBINED REQUIREMENTS,

DESIGN, AND TEST DOCUMENT

“AUTOMATED MONITORING SOLUTIONS”

by GROUP RAAD

MEMBERS:

● DUYGU DOĞAN

● OĞUZHAN BURAK ISSI

● METEHAN ÖZTÜRK

● YİĞİT YÜKSELEN

ASSISTANT : Hazal MOĞULTAY

SUPERVISOR: Asst. Prof. Ebru Aydın GÖL

 1

TABLE OF CONTENTS
1. SYSTEM REQUIREMENTS...….3

1.1 REVISED SYSTEM REQUIREMENTS..….3

1.2. REVISED PROJECT PLAN..5

1.3. USE CASE DIAGRAMS...…..6

2. SYSTEM DESIGN………………...…10

2.1. MODULE STRUCTURE………………...…..10

2.2. SOURCE CODE STRUCTURE.………..…….12

2.3. COMPONENT DIAGRAM….…………..12

2.4. DEPLOYMENT DIAGRAM..…………...…..13

3. TESTING………………………………..13

3.1. TESTING PLAN AND SCENARIOS…...13

2.2. TESTING CODE STRUCTURE.………...14

2.3. TEST RESULTS…………..….…………..14

TABLE OF FIGURES
Figure 1 : Sequence Diagram of “Changing the Frequency of Data Transferring to Graphics”…..........................3

Figure 2 : Sequence Diagram of “Organizing the Kept Data About the Metrics”…...3

Figure 3 : Sequence Diagram of “Displaying Graphics with the Selected Queries”……………..............................4

Figure 4 : Sequence Diagram of “Renaming Tabs of the System and Grouping Graphics”……….........................5

Figure 5 : Sequence Diagram of “Log In to the System”..5

Figure 6 : Use Case Diagram of Automated Monitoring Solutions..6

Figure 7 : Class Diagram of Automated Monitoring Solutions…...10

Figure 8 : Component Diagram of Automated Monitoring Solutions..12

Figure 9 : Deployment Diagram of Automated Monitoring Solutions...13

 2

1. SYSTEM REQUIREMENTS
 1.1. REVISED SYSTEM REQUIREMENTS (with Sequence Diagrams)
 These sequence diagrams shows the interactions between the components of the system (i.e.
administrator, user, administrator interface, user interface, and data system). The messages between
each lifetime named with their corresponding function names in our class diagram. The interaction
names of each sequence diagram are related with the use case names in our use case diagram.

The explanations of each use case diagram and class diagram (and its functionalities) can be
found in their corresponding parts.

Figure 1 : Sequence Diagram of “Changing the Frequency of Data Transferring to Graphics”

Figure 2 : Sequence Diagram of “Organizing the Kept Data About the Metrics”

 3

Figure 3 : Sequence Diagram of “Displaying Graphics with the Selected Queries”

Figure 4 : Sequence Diagram of “Renaming Tabs of the System and Grouping Graphics”

 4

Figure 5 : Sequence Diagram of “Log In to the System”

 1.2. REVISED PROJECT PLAN
This part includes our work package plans about the project from the beginning of the year

to end of the year. Each work package has its own sub-packages which completed during the
process.

(1) WP1 – Core Functions and Logger Class Core Implementation
This work package includes developing test servers. Log files were created manually during
the dummy server test phase.
The second sub-package is defining basic metrics, log standardization and implementing
Logger Class. Since we worked on standard log files first, we defined the basic metrics
which are needed mostly to be monitored. After this phase, the logs were standardized
according to metrics that we defined. On the behalf of flexibility, a core logger class was
implemented. This logger class was able to extract a log file, in our standard, including
different metrics from different given log files, thanks to the its modular system and added
loggers.
The third sub-package is exporting basic metrics. The metrics which were chosen to be
stored in our data storage were exported from the logs we standardized and prepared to be
sent to the data storage.

(2) WP2 – Data Storage
The first sub-package setting up a data storage system. MongoDB is used as data storage
solution.
The second sub-package is data gathering and organizing. The prepared data were queued to
the storage and the template of data storage methods were prepared. The storage system is in
communication with the back-end server.

(3) WP3 – Back-end Server Development and Component Testing
The sub-package is starting develop both front-end and back-end servers. The data in our
storage system were retrieved and processed using a back end server that was implemented
in JavaScript (NodeJS). To verify that the data were properly processed by the back end
server, and a simple front-end server was developed.

(4) WP4 – Front-end Server Development and Visualization
The first sub-package is monitoring and showing dashboards. The gathered and processed
data were visualized as line graphs. The graphs aimed to be real timed which means they
were refreshed within a specified time interval.
The second sub-package is implementing alerting mechanisms. A system which alerts the
user depending on the options provided were implemented (via e-mail).

 5

(5) WP5 – Mobile Application Development (Android)
The sub-package is implementing an android application which includes all the features web
framework has.

 1.3. USE CASE DIAGRAMS

Figure 6 : Use Case Diagram of Automated Monitoring Solutions

Use Case Names:
• Changing the Frequency of Data Transferring to Graphics
• Organizing the Kept Data About the Metrics
• Displaying Graphics with the Selected Queries
• Renaming Tabs of the System and Grouping Graphics
• Log In to the System

 6

Use Case Scenarios:

Use Case Scenario 1: Changing the Frequency of Data Transferring to Graphics

Use Case Name: Changing the Frequency of Data Transferring to Graphics

Use Case ID: UC1

Included Use Case(s): UC5

Primary Actor(s): Administrator

Description Administrator changes the period of time which includes adding new
data and refreshing real time graphic.

Precondition: Administrator must have already logged in.

Trigger: Administrator changes the frequency of data refreshing on real time
graphic

Main Success Scenario: 1. Administrator navigates the part that includes changing frequency
functionalities
2. Administrator decides the new frequency of the refreshing graphic
3. Administrator fills the input part on the framework related with the
frequency of graphic refreshing
4. Administrator submits the new value to the system
5. System changes the corresponding part of the user profile file

Alternate Scenarios:

Use Case Scenario 2: Organizing the Kept Data About the Metrics

Use Case Name: Organizing the Kept Data About the Metrics

Use Case ID: UC2

Included Use Case(s): UC5

Primary Actor(s): Administrator

Description Administrator changes the kept data – mostly saved long time ago and
should deleted to reduce the load of these data on data system -

Precondition: Administrator must have already logged in.

Trigger: Administrator notices that the data saved long time ago to database
have became redundant burden for data system because these data are
not viewed by owner of them anymore

Main Success Scenario: 1. Administrator detects the time interval which has an importance for
the user – to illustrate user does not display the data belong to two
months ago or more
2. Administrator deletes or reduce the data kept on the data system to
reduce the burden of data system – to illustrate, as above if the data are
not used anymore which belongs to two months ago are deleted or
reduced by taking the average of longer time interval

Alternate Scenarios:

 7

Use Case Scenario 3: Displaying Graphics with the Selected Queries

Use Case Name: Displaying Graphics with the Selected Queries

Use Case ID: UC3

Included Use Case(s): UC5

Primary Actor(s): User

Description User fills the corresponding query parts of the framework to display the
graphic/graphics that constructed based on these queries

Precondition: User must have already logged in.

Trigger: User want to display the status of the system or the values of a specific
metric/ metrics for chosen application name, physical server name that
the application runs on, and the metric name with maximum time/
minimum time/ maximum value/ minimum value

Main Success Scenario: 1. User decides to see the values of a metric/ metrics on the graphic
2. User chooses the application name and physical server name that
runs the application – if he/she does not choose the physical server
name, all metric values on these servers that runs the application are
displayed on graphic -
3. While displaying the graphics on the screen, if user wants to put
boundaries for x-axis (minimum time/ maximum time) or y-axis
(minimum value/ maximum value), he/she can fill the corresponding
areas on the screen
4. After submitting the values to the system, back end server answers to
request and sends the needed data to front end server. Front end server
constructs the graphic/ graphics.

Alternate Scenarios:

Use Case Scenario 4: Renaming Tabs of the System and Grouping Graphics

Use Case Name: Renaming Tabs of the System and Grouping Graphics

Use Case ID: UC4

Included Use Case(s): UC5

Primary Actor(s): User

Description After constructing the graphic on a tab, the user rename the tab and
grouping the new added graphic to other related graphics on a renamed
tab – to illustrate “My Application_1 Related Graphics” -

Precondition: User must have already logged in.

Trigger: If added graphic is related with another graphics on the screen at that
time, or if user wants to see more than one graphic groups which are
related with each other, he/she can group them and rename the
container tab.

 8

Main Success Scenario: 1. User wants to add graphic which is related to another graphic/
graphics on the screen at that time
2. User groups them together in a tab to provide ease of use
3. The name of tab can be changed by the user not to forget why these
graphics on the tab were grouped together

Alternate Scenarios:

Use Case Scenario 5: Log In to the System

Use Case Name: Log In to the System

Use Case ID: UC5

Included Use Case(s):

Primary Actor(s): User

Description User (or Administrator) log in to the system with his/her own personal
information.

Precondition: User must have already in the database.

Trigger: User clicks the “Log In” button after entering the necessary information
which belongs to his/her.

Main Success Scenario: 1. User navigates the “Log In” section
2. User enters his/her own credentials.
3. System checks if the entered parameters are valid.
4. System creates a new session for the user.

Alternate Scenarios: 2a: If the user provides invalid login information, framework notifies
and redirects user to login section.

 9

2. SYSTEM DESIGN
 2.1. MODULE STRUCTURE
 The module structure is explained via Class Diagram of the system.

Figure 7 : Class Diagram of Automated Monitoring Solutions

Class Diagram Explanation:

Administrator Interface:
• adminLogin(): Login functionality for administrator.
• adminInfoVerified(): Administrator information is verified with the one in the data system.
• assignNewFrequency(): New data frequency (resolution of data) is assigned by

administrator for a specific user.
• verifyFreqChange(): The change of the frequency of data for the specific user is done and

verified.

User Interface:
• userLogin(): Login functionality for user.
• userInfoVerified(): User information is verified with the one in the data system.
• enterQueryValues(): The query values are entered. At the first step, application name,

physical server name, and metric name are entered. Then, time and value boundaries are
entered at the second step and request is sent to back end server.

• returnSpecificInfo(): Specific metric values for the corresponding queries are sent from
data system to interface.

 10

• enterTabName(): Grouping related graphics with a tab name.
• verifyTabNameChange(): The entered new tab name is verified by data system and

returned to the interface.

Administrator:
• adminLoginSuccess(): Login operation is succeeded by administrator.
• displayNewFreq(): Administrator displays the effects of new frequency value on the

system.
• verifyAdmin(): Administrator information is verified for the data system access.
• displayOrgData(): Administrator sees the effects of the data organization on data system

which is deleting/ taking mean of the data values for specific time interval and deleting the
original values.

User:
• userLoginSuccess(): Login operation is succeeded by the user.
• displayOnGraphic(): User displays the new graphic which was drawn with the given query

values.
• displayChangedTabName(): User displays the changed tab name on the system.
• emailAddress: Email address of the user.
• password: Password of the user.
• graphicInfo: The graphic information that default page of the user includes.
• tabNames: Tab names of the user’s default page.
• companyName: Company name of the user.

Database:
• checkAdminInfo(): The entered administrator email address and password match is

checked with the ones in the data system.
• findUserNewFreq(): Find the specific user in the data system whose data resolution should

have been changed.
• checkDBPermission(): For the administrator, when the issue is data organization

(deleting/taking mean of the data in a time interval) check the permission for the
administrator information.

• organizeMetricRecords(): Deleting/taking mean of the data in a time interval request is
taken from the administrator interface.

• checkUserInfo(): The entered user email address and password match is checked with the
ones in the data system.

• getSpecificInfo(): Get the specific graphic information from the data system with the
entered query values and names.

• transmitTabName(): Tab name which the user has changed is transmitted to the data
system.

Metric:
• metricName: Name of the metric.
• metricValue: Value of the metric.
• metricDate: The date which the metric is logged by the system.
• metricType: The type of the metric (e.g. String, Integer, Long Integer, Date, …)

 11

2.2. SOURCE CODE STRUCTURE
In this part of the document, the important parts of the code structure in GitLab and the

functionalities of these parts are explained. The ones related with the testing process are explained
in Part 3.2.

 1. Rest Folder:
 1. server.js file: The file which includes the code parts that makes web service work.
 2. app Folder:

 1. routes.js file: This file includes the code pieces which answers the requests and route
them to required url paths.

 2. query.js file: This file includes the queries which are produced for the database
system MongoDB.

 3. models Folder: This folder includes the data semantics of the system.
 3. config Folder: This folder includes the file with related to configuration of our system.

Besides that the code implementation which is related with the login operation is here,
passport.js file.

 4. views Folder: This folder includes the front end design files of the specific urls.
 5. node_modules Folder: The libraries we used in NodeJS files.

 2. Logger Folder:
 1. /src/main/java/com/raad/ams Folder:

 1. abs Folder: The abstract classes of logger class and each log file record are here.
 2. api Folder: The interface classes are here.
 3. impl Folder: The implementation files are gathered here.
 4. utils Folder: This folder includes the utilities.

 2. pom.xml file: This file includes the connection between the libraries which we used.
 3. LogServer Folder:

 1. /src/main/java/logserver Folder:
 1. LogBean.java: This class includes the semantics we used while converting log

records to JSON object format.
 2. LogServer.java: The main log server codes which reads the log file and sends the

records to RESTful web service.

2.3. COMPONENT DIAGRAM

Figure 8 : Component Diagram of Automated Monitoring Solutions

 12

2.4. DEPLOYMENT DIAGRAM

 Figure 9 : Deployment Diagram of Automated Monitoring Solutions

3. TESTING
 3.1. TEST PLAN AND SCENARIOS
 The general mechanism of the “Automated Monitoring Solutions” begins with the user
companies’ own servers. Through the developing process, we could not work with the real
companies’ servers. Instead, we developed test servers which produce random metrics and metric
values in different value ranges. We completed our testing process on the logger class
functionalities, log file format, and network connection between log server and MongoDB via
JSON formatted objects thanks to our test servers. At the end, we wrote down these metric values
we gathered on the graphics.
 An example testing scenario:

I. A dummy test server which belongs to Company_1 (there are more than one company
records in our database) produce “Request Handle Time” metric in time.

II. This metrics are gathered by Log Server within a standardized log file. This log file
standardization is done by us and creation of these log files is completed by our Logger
Class module. The metrics which are wanted to be monitored are identified to Logger Class
module.

III. After taking the log file, Log Server turns the log file records to JSON object and sends
these objects to RESTful Web Service.

IV. The RESTful Web Service records these objects to corresponding area in the database.

 13

V. When a request is received from the front end server, the query values (application name
which this metric belongs to, physical server name which holds this type of metric
information, and boundary values for this metric) are processed by back end server and
required records for that query’s result are sent to front end server to construct a graphical
visualization.

 Some little parts differs in the scenario are given in the test results part.

 3.2. TESTING CODE STRUCTURE
 Besides the code files which are responsible for the working of the system, we have some
testing codes in the general code structure. These code file names and their place in the general code
structure are given below.

 1. Logger Folder:
 1. /src/main/java/com/raad/ams/ Folder:

 1. appServer file: This includes our dummy test servers which is a server-client model
example.

 2. /src/test/java/ Folder:
 1. junit Folder: This includes the unit test files.

 2. LogServer Folder:
 1. /src/test/java Folder:

 1. junit Folder: This includes the unit test files.

 3.3. TEST RESULTS
 We perform some other testing scenarios which includes

• more than one company record transferring to the system to confirm the way of writing
metrics to their owner company’s area on database

• creating users’ own space on database which holds their email address, password, default
front end page graphic areas design (i.e. which tab have which graphic, which metrics
are displayed on these graphics, what are the boundary values of x-axis and y-axis of
these graphics, what are the names of the tabs as default)

• entering new resolution values for real time graphical monitoring (i.e. refreshing graphic
in every “determined” time interval)

 After testing these parts, we had healthy results in the end. We could displayed the desired
metrics on desired tabs and graphics.

 14

