

Smart Shopping List
The Chaincoders

Combined SRS-SDD-Test Document

Zeynep Akkalyoncu - 2035541
Arda Efe Okay - 1937333
Erinç Argımak - 1941772

1

Table of Contents

1. System Requirements ………………………………………………………………... 3
a. Specific Requirements ……………………………………....……………. 3-4

i. Functionalities and Operations …………………………………….... 3
ii. User Interfaces ………………………………………………………. 3

iii. Software Interfaces …………………………………………………... 4
iv. Hardware Interfaces …………………………………………………. 4
v. Communication Interfaces …………………………………………... 4

vi. Memory Constraints …………………………………………………. 4
vii. Limitations …………………………………………………………... 4

b. Project Plan ………………………………………………………………... 4-5
c. Use Case Diagrams ………………………………………………………... 5-7

2. System Design ……………………………………………………………….……7-10
a. Module Structure ……………………………………………………....…….. 7
b. Git Source Code Structure ……………………………………………....….... 8
c. Component Diagram ……………………………………………………...…. 9
d. Deployment Diagram ……….…………………………………………….... 10

3. Testing …………………………………………………………………………... 10-13
a. Test Plan and Scenarios ……………………………...…………………. 10-11
b. Git Testing Code Structure …………………………...………………… 11-12
c. Test Results ………………………………………………………………… 13

4. References …………………………………...……………………………………... 13

2

1. System Requirements

a. Specific Requirements

i. Functionalities and Operations

The “Smart Shopping List” application is a basic shopping list application enhanced

with machine learning, artificial intelligence and national language processing techniques.
Using “Smart Shopping List”, you can create your online shopping lists and share them in
app or via Facebook. The app can recommend you some products according to your habits
and preferences. In addition to these, the Virtual Assistant - ChatBot can help you in app to
find some specific products or just operate the app.

You can find the cheapest real items from real markets and add them to lists. Also, at
market you can mark them as bought.

ii. User Interfaces

Figure 1: ​Login page

Figure 2: ​Example shopping list view

The user shall see the login page in Figure 1 when they first open the application.

Other main pages include the list page, shown in Figure 2, user page, virtual assistant page,
new item page, etc. The user interfaces shall be simple and intuitive enough for anyone to
operate; all the pages are designed with this goal in mind. All of the pages can be accessed
with a single click from the master view in the master-detail navigation model. Longer
scroll/list views have a quick access control on the right with the initial of a subcategory
name pointing to the respective subcategory.

3

iii. Software Interfaces

The “Smart Shopping List” application can run on Android and iOS operating

systems. So, user’s mobile device should have one of these operating systems.

iv. Hardware Interfaces

Since the application must remain connected to the Internet for real-time

synchronization, the user’s mobile device must have a functioning wireless unit, and an
accessible connection device nearby (e.g: modem).

v. Communication Interfaces

“Smart Shopping List” mobile application uses the HTTP protocol for communication

over the Internet with the Django backend hosted on the Azure virtual machine, and TCP/IP
protocol suite for intranet communication.

vi. Memory Constraints

The user’s mobile device must have at least 54 MB spare storage to install and have
the application run smoothly. This space is required to accommodate the application
executable as well as embedded images.

vii. Limitations

Due to time limitations of project and workload, our product dataset include only
carrefoursa market. This may populated with other scrapper and crawler tools.

“Smart Shopping List” application can run on iOS 10 or Android Api Level 15 (4.0.3)
and further.

Due to Chatbot - NLP part, app language is limited with English.

b. Project Plan

We had initially planned to complete the basic shopping list application with full
capabilities (i.e: creation of lists tied to users in the backend) in the first four sprints. (1 sprint
= 3 weeks) We had originally intended to develop our application primarily in Android, and
then later port it to iOS as a bonus feature. After we attended a seminar at the department by a
Xamarin representative, we decided to switch over to Xamarin Forms so that we could pursue
both more quickly.

4

At least two weeks of website crawling and data scraping had to be performed in
advance in order to gather sufficient data to populate the database significantly, which would
be used for list item operations on the client-side, and later as machine learning training data.
This estimated amount of time was enough despite certain anticipated challenges (e.g:
running the script at a controlled rate to avoid getting banned) although we had to repeat this
process a few more times throughout the year due to other technical issues.

In the meantime, we started constructing the backend using Azure’s Mobile App

Services. While this service was practical in communicating from the Xamarin application
with the database, we found it was not flexible enough to build our own web services -
recommendation systems and virtual assistant - that lied at the core of our project. We
struggled for a while during the search for a better option, at the end of which we successfully
started constructing a Django RESTful API, which greatly accelerated our progress from that
point on.

In the beginning, we estimated sixteen man-months’ worth of work for the

development of recommendation systems, and nine for virtual shopping assistant. In other
words, we allocated the majority of our remaining time following the initial mobile
application development period to these web services. Because we spent more time on other
tasks than planned earlier, we had to complete these tasks at a faster rate. Finally, we
managed to finish all the relevant tasks in the very last sprint in spite of the delay.

Other remaining tasks such as social media integration and integration, particularly

those regarding custom iOS and Android controls, were tricker than we thought, and couldn’t
be finished in the expected 2-3 three weeks.

c. Use Case Diagrams

Figure 3:​ Use Case Diagram 1: Login Operations

5

If a user don’t have a ChainCoders Account, s/he can it with ChainCoders App. Also,
User can login with ChainCoders Account or Facebook account to our app.

Figure 4:​. Use Case Diagram 2: Shopping List Operations

Using our app, users can create new shopping lists, edit existing ones and browse

them. There are tags that lists can have. Users can use them to identify their shopping lists.
User can share their shopping lists with other to collaborate with them

6

Figure 5:​ Use Case Diagram 3: Item Operations

There are 3 ways to add a product to shopping lists. These are using virtual assistant,
using recommendation system and using search service. At both way, user can interact with
service with speech or text and can get response with speech and text. User can change the
quantity of shopping list products and you can delete them. In addition to these, user can
mark the items like hand written shopping lists.

2. System Design

a. Module Structure

Figure 6:​ Module structure of mobile application “Smart Shopping List”

7

b. Git Source Code Structure

The structure under our master branch is shown below. Auto-generated configuration and
training/test data files are not included. Note that actual file names are replaced by their
explanations in italic for brevity.

--

SmartShoppingList

● Backend
○ shoppinglist

■ Django app configuration
○ api

■ Django RESTful API implementation
■ Chatbot

● Conversational
○ deep learning chatbot model
○ chatbot logic implementation

■ Recsys
● content_based

○ content based recommendation implementation
● collaborative

○ item and user based recommendation implementation
● hybrid recommendation implementation

● Data
○ ScraperCrawler

■ website scraper/crawler C++ source code
○ product standardizer and database populator Python scripts

● Xamarin
○ chaincoders

■ application configuration and main file
■ Controls

● custom visual, speech-text-speech, etc. control implementations
■ Models

● JSON classes for backend connection and other client-side
models

■ ViewModels
● C# source code to define display rules for data

■ Views

8

● C# source code and XAML declaration files for mobile
application views

○ iOS
■ iOS application configuration and main file
■ Controls

● custom iOS implementations for relevant controls defined in
shared folder

○ Droid
■ Android application configuration and main file
■ Controls

● custom Android implementations for relevant controls defined
in shared folder

--

c. Component Diagram

9

Figure 7:​ Component diagram of mobile application “Smart Shopping List”

d. Deployment Diagram

Figure 8:​ Deployment diagram of mobile application “Smart Shopping List”

3. Testing

a. Test Plan and Scenarios

Testing of the client side application was planned to be UI Testing mostly, checking if
all views function as intended, i.e. leading to correct pages or information. Test plan included
Android application testing using "Xamarin.UITest" package, which runs tests on dedicated
devices via "NUnit" package test adapter. An independent test sub-project was created. Test
Plan included checking for:

10

● Application Login Page Mechanism
● Application List Page
● New Item screen
● Side Menu Functionality

Test scenarios included:

● User opens the app.
● User enters credentials and presses the login button.
● User picks a list from menu.
● User picks an item from the list.
● User invokes side menu view.

b. Git Testing Code Structure

Under the master branch, the test project is located in the "Xamarin" folder and is
included in the Application solution as a project. It is built and deployed with the project. The
references of projects which correspond to the tested platforms are linked into the test project.
The test code consists of two parts:

Figure 9:​ App Initializer code

11

Figure 10:​ Test Cases (Partial sample)

As a tree mode:
SmartShoppingList (Referring to the one in Git Source Code Structure part)

● Xamarin
○ chaincoders

■ ...
○ iOS

■ ...
○ Droid

■ …
○ UITest

■ AppInitializer
■ Tests
■ References

12

c. Test Results

Test results consist of several screenshots that correspond to the screens at that point
of testing. After production of these images, the tester is responsible for checking them
against the intended screens and report. Upon testing, we have confirmed that the views
function as intended.

4. References

This document was written in accordance with the IEEE Standards as dictated in the
following report: “ISO/IEC/IEEE 29148:2011 Systems and software engineering - Life cycle
processes - Requirements Engineering”.

13

