
CRDT

The Dining Philosophers

June 1, 2017

Contents

1 Preface 2

2 Introduction 3

2.1 Problem Definition . 3

2.2 Purpose . 3

3 System Requirements 4

3.1 System Requirements . 4

3.2 Project Plan . 5

3.3 Use Case Diagrams . 6

4 System Design 9

4.1 Module Structure . 9

4.2 Source Code Structure . 10

4.3 Component Diagram . 11

4.4 Deployment Diagram . 12

5 Testing 13

5.1 Assumptions . 13

5.2 Test Plan . 14

5.3 Code structure . 14

1

Preface

This document contains the combined SRS - SDD - Test document for the “Real-

Time HDR Video Capture and Display Pipeline” project. The following sections

include three major parts. (1) System Requirements, (2) Design and (3) Testing.

2

Introduction

This document is a combined SRS - SDD - Test document for the real-time HDR

video capture and display pipeline system. In this document, system requirements,

design and testing parts of the project will be explained, respectively.

2.1 Problem Definition

Conventional image and video acquisition methods cannot capture the dynamic

range of real world scenes. Such devices will output content with missing informa-

tion such as saturated or completely dark pixels in bright and dark regions of the

scene, respectively. High dynamic range imaging aims to overcome these limitations

and capture the full content in a scene. HDR imaging poses mainly two challenges:

acquiring and displaying HDR content.

There are several existing commercial products that operate on HDR content. How-

ever, these hardware are often inaccessible by researchers or end-users due to their

extremely high price tag.

2.2 Purpose

Our project aims to implement a real time HDR imaging pipeline (capture and dis-

play) using off the shelf products such as regular cameras and LCD displays, which

will arguably cost only a fraction of a dedicated hardware solution.

The fundamental problem our project aims to solve is the cost and availability

barrier of real time high definition HDR content acquisition and displaying.

3

System Requirements

In this part of the document short information about initial and revised system

requirements will be provided. All the requirements will be explained briefly as

follows.

3.1 System Requirements

• Control Cameras : User can control the shutter speed, manual focus and ISO

using OpenGL GUI to be able to obtain alternating scenes.

• Acquire and Sync LDR Video Stream From Cameras: User can acquire LDR

Video stream from cameras which are working on different exposure settings.

• LDR Image Registration in GPU: Image registration can be done in GPU

while frames are acquiered from different cameras. Comparative testing of

algorithms should be done.

• Camera Response Curve Recovery: User can recover offline camera response

curve for each camera.

• OpenGL GUI Control: User can display parameters, change parameters like

shutter speed, exposure, ISO values using OpenGL GUI.

• Generate HDR Frames: HDR frames are generated while acquiring LDR

frames from cameras.

• Real Time Video Tone Mapping: Before completing display set up, real time

video tone mapping should be done to be able to see HDR frames.

• Breakdown HDR Frames into Projector and LCD Streams: Luminance map

will be extracted to the projector and chromoticity map will be extracted to

LCD streams.

4

• Postprocess the streams: User can smooth the luminance map for backgroung

also sharpen the chromaticity map for foreground. Postprocessing the streams

actully should be done while generating HDR frames.

• HDR Calibration & Display Set up: HDR Calibration and Display Set up

should be done to be able to see HDR frames generated by cameras.

3.2 Project Plan

Our project plan over time can be summarized as this:

Months

1 2 3 4 5 6 7 8 9

Fall

Camera Control

LDR Acquisition

Disparity Map

HDR Generation

Tonemapping

HDR Camera

Spring

Software Controller

LCD Disassembly

Projector Disassembly

Physical Setup

HDR Display

Camera Refinements

E2EHDR

5

3.3 Use Case Diagrams

This section includes use case diagrams of the E2EHDR project. Since some of the

operations will be done directly on GPU, in this section only user related use cases

will be explained.

Use Case ID UC1

Use Case Name Start Cameras

Included Use Case(s) None

Primary Actor(s) User

Description User can start the multiple cameras by using

OpenGL GUI.

Precondition None
Use Case Diagram 1: Start Cameras

Use Case ID UC2

Use Case Name Stop Cameras

Included Use Case(s) None

Primary Actor(s) User

Description User can stop the multiple cameras by using

OpenGL GUI.

Precondition None
Use Case Diagram 2: Stop Cameras

Use Case ID UC3

Use Case Name Video Recording

Included Use Case(s) None

Primary Actor(s) User

Description User can record HDR video from the multiple

cameras.

Precondition None

Use Case Diagram 3: Video Recording

Use Case ID UC4

Use Case Name Play Video

Included Use Case(s) None

Primary Actor(s) User

Description User can play recorded video from player

shown in HDR display.

Precondition None

6

Use Case Diagram 4: Play Video

Use Case ID UC5

Use Case Name Pause Video

Included Use Case(s) None

Primary Actor(s) User

Description User can pause video from player shown in

HDR display.

Precondition None

Use Case Diagram 5: Pause Video

Use Case ID UC6

Use Case Name Change Aggregation Settings

Included Use Case(s) None

Primary Actor(s) User

Description User can change the aggregation settings

from OpenGL GUI. Settings are Cross Ag-

gregation , Aggregate 3x3 , Aggregate with

PTKR , Aggregate 3x3 with PTKR

Precondition None

Use Case Diagram 6: Change Aggregation Settings

Use Case ID UC7

Use Case Name Change Refinement Settings

Included Use Case(s) None

Primary Actor(s) User

Description User can change refinement settings by us-

ing OpenGL GUI. Refinement settings are

Median Filtering, Outlier Detection, Outlier

Correction

Precondition None

Use Case Diagram 7: Change Refinement Settings

Use Case ID UC8

Use Case Name Change Luminance Settings

Included Use Case(s) None

Primary Actor(s) User

Description User can control base and maximum lumi-

nance settings for global tone map operation.

Precondition None

7

Use Case Diagram 8: Change Luminance Settings

Use Case ID UC9

Use Case Name Display Disparity

Included Use Case(s) None

Primary Actor(s) User

Description User can display the resuting disparity map

obtained from LDR frames.

Precondition None

Use Case Diagram 9: Display Disparity

Use Case ID UC10

Use Case Name Select CRF Profile

Included Use Case(s) None

Primary Actor(s) User

Description User can control which camera response

curve will be chosen.

Precondition None

Use Case Diagram 10: Select CRF Profile

Use Case ID UC11

Use Case Name Change Exposure Settings

Included Use Case(s) None

Primary Actor(s) User

Description User can control the exposure settings using

OpenGL GUI.

Precondition None

Use Case Diagram 11: Change Exposure Settings

Use Case ID UC12

Use Case Name Change Cost Settings

Included Use Case(s) None

Primary Actor(s) User

Description User can change the cost settings. Cost set-

tings are AD, AD Census, Census.

Precondition None

Use Case Diagram 12: Change Cost Settings

8

System Design

4.1 Module Structure

E2EHDR consists of 11 separate projects, some libraries and some applications.

Projects use CMake as a meta build system and we are able to build on all major

platforms (OS X, Linux, Windows). Descriptions of each module is listed below.

Libraries:

• e2e gl: This library provides a pipeline to compute disparity map and makes

use of it to generate hdr frames. OpenGL and GLSL are used to utilize the

computing power of the GPU. The library provides abstractions to handle

OpenGL calls. It involves operations related textures, geometry, framebuffers,

loading&binding&linking shaders and etc.

• e2e calib: This library is used to calibrate the stereo camera setup we use to

generate intrinsic and extrinsic parameters which are used to undistort and

rectify input images.

• e2e control: This library is used to control Sony IP cameras which have prob-

lems being controlled over ONVIF protocol. This library supports controlling

the shutter times of cameras in an asynchronous manner.

• e2e ffmpeg: This library is used to get real time video stream from IP cameras

using the real time streaming protocol (RTSP). This library supports pulling

frames from cameras encoded using H264 codec and converts the images from

YUV420 color space to RGB8 color space, using multiple threads and single

producer single consumer frame queues.

• e2e gphoto: This library is used to get real time video stream from many

brands of DSLR cameras using USB protocol. This library supports frames

encoded using MJPEG codec and like ffmpeg, converts these frames to regular

uncompressed RGB8 frames. This library is also asynchronous.

9

• e2e utils: This library provides essential utilities used by almost all other

libraries we’ve written such as image import/export, a zero overhead hierar-

chical profiler, a thread safe, zero allocation single producer single consumer

queue, a thread pool for task based concurrency support, visitor utilities and

a generic image frame template.

• e2e webcam: This library provides support for pulling real time video stream

from USB webcams over UVC protocol. This library supports frames en-

coded using H264/HEVC codec with YUV420 color space. Like other camera

providers, this library is also asynchronous and communicates over spsc queues.

• e2e x264: This library provides our own HDR video compression algorithm.

Without details, we simply divide HDR frames in two and compress the two

frames in parallel and encode them using H264 codec. Decoding is done vice

versa.

• e2e crf: This library provides unattended camera response function recovery

support. It simply captures multiple exposures consecutively and using the

method developed by Robertson Et Al.

Applications:

• e2e camera: This application is the program that drives the stereo camera

setup and supports recovering camera response functions, recording videos,

changing camera settings, tonemapping, selecting HDR generation parameters

and choosing stereo matching parameters.

• e2e player: This application is used to drive our HDR display setup. Since we

are actually using 2 display devices, regular OpenGL calls are unable to use

them. Our player breaks HDR frames into two frames in order to be able to

be used by the setup.

4.2 Source Code Structure

• /3rd party: This folder includes several external libraries which are used in

the project extensively.

• /cameras: This folder includes several parameter settings for the cameras.

• /cmake modules: This folder includes several cmake modules for the external

libraries.

10

• /matlab: This folder includes some prototypes written in matlab.

• /samples: This folder includes the libraries and applications we have written

so far. Each of them is explained in the previous section.

4.3 Component Diagram

Since our project is aimed to execute in real-time, we loop over a fixed pipeline that

we carefully designed. This loop contains several components that work collabora-

tively one after another to achieve the goal of producing hdr frames for videos and

playing the videos that are produced. Interfaces containing the word “settings” are

provided by the components in order to make it possible for users to adjust neces-

sary parameters for different scenes and to leave the choice of performance-quality

trade-off to the users. For instance, by altering the parameters of “Exposure Set-

tings”, we can set the exposures of the cameras to a lower level if the environment

is bright or to a higher level if the environment is darker. Other interfaces related

to adjusting parameters are working in the same manner.

Figure 4.1: Component Diagram

11

4.4 Deployment Diagram

Deployment diagram, which is provided below, clearly indicates that our project

does not depend solely on software or hardware but the balanced combination of

them. The computer is the main hardware device which communicates with other

hardware devices. The connection between the web cameras and the computer is

established by the usb protocol. Frames taken by the cameras are sent to computer

and the computer processes frames to produce a final hdr image. Then, it splits the

resulted hrd image into two frames which are to be sent to projector and lcd. We

use hdmi and vga for connections between the computer and projector and between

the computer and the lcd, respectively.

Figure 4.2: Deployment Diagram

12

Testing

This chapter contains the plan and details of testing our design project, E2EHDR.

5.1 Assumptions

As we are building real time software, performance is the most important aspect for

us while programming. Due to this reason, in performance builds it’s not possible

for us to add checks for any kind of programmer, user or hardware error.

We basically assume these in a normal run or test:

1. Hardware interfacing libraries work reliably: most of the hardware

interfacing libraries we use (such as OpenGL, UVC, FFMPEG and gPhoto) are

written in C and do not support C++ exceptions and routinely report any kind of

diagnostic through global error numbers. Checking for these global error codes after

every function call is inadmissible. Therefore, we assume the hardware interfacing

libraries do not have any internal defects (such as unimplemented functionality) that

we have to check after every request.

One problem of our project is that the UVC library we use to control webcams

sometimes silently fail when changing the exposure without reporting any error .In

this case, we don’t say check the new image whether the exposure actually changed

or not.

2. Capture hardware is able to provide 720p video at or under 24

FPS: Most of our internal buffers and structure expect 720p frames, due to this,

the cameras should provide this resolution since we cannot afford under or over

sizing to fit to the resolution requirement. We store the images in RGB format

in the program, however our software accepts both 8 bit RGB frames or YUV420

frames and convert if necessary.

Also, we process the frames at 24 frames per second, and do not do any syn-

chronization with time. What this means is if the camera provides frames say at 30

frames per second, our software won’t be able to keep up with the stream and will

eventually run out of buffer space and will overwrite previous frames.

13

3. Input devices provide the same colors when the same software

settings are used: we are using two camera frames to calculate disparity maps.

The disparity map algorithm uses absolute color differences to determine which pixel

corresponds to which pixel between images. If the cameras provide different colors

for the same object due to some hardware issue, the disparity map is unable to work

reliably.

5.2 Test Plan

As previously mentioned, our project contains of nine libraries and two applications.

Six of these libraries are directly used to interface with, control or calibrate the input

devices such as IP cameras, webcams or DSLR cameras. Without the devices being

connected to the computer, it’s not possible to run any unit or integration tests

on these projects. Since the behaviour of the applications are meaningless without

cameras or the HDR display being present, there are no tests for the applications

either.

The remaining three libraries have their unit tests written using the Catch Unit

Test Framework for C++.

Although there aren’t any unit tests written for the remaining projects, all of

our projects have proper assertions and in debug mode, almost all of the libraries

do extensive checks on the pre-, post- conditions and class invariants.

5.3 Code structure

Our test code structure is quite simple. Any test related file resides in a sub-directory

named tests under the project folder. We are using CMakes enable testing()

feature to integrate tests with the build process. Basically, running a make tests

command runs the tests and reports any error during the test including crashes.

• /samples/e2e gl/tests: Contains tests for:

– Window creation

– Shader compilation and linking

– Texture creation

– Framebuffers

– Render to texture

14

https://github.com/philsquared/Catch
https://github.com/philsquared/Catch

• /samples/e2e utils/tests: Contains tests for:

– Thread pool

– Jpeg image I/O

– Hierarchical profiler

– Single producer single consumer queue

– General concurrency tests

• /samples/e2e x264: Contains tests for:

– x264 encoding

– x264 decoding

– SEI off data payload

15

	Preface
	Introduction
	Problem Definition
	Purpose

	System Requirements
	System Requirements
	Project Plan
	Use Case Diagrams

	System Design
	Module Structure
	Source Code Structure
	Component Diagram
	Deployment Diagram

	Testing
	Assumptions
	Test Plan
	Code structure

