CloudChain Project

Design Overview

Advisor:

Onur Tolga Sehitoglu
Assistant:
Mustafa Levent Eksert
Team Members:
Berk Yasar - 2036333
Cem Onem - 2031821
Ekin Dursun - 2098952
Sinan Erdil - 2098994

January 2018

Table of Contents

Table of Contents

List of Figures

1 Product Description

2 High Level System View

3 Overall Design
3.1 Architecture L
3.2 Deployment

4 Alternative Design Options
4.1 Custom Blockchain
4.2 Partial File Storage

References

List of Figures

Context Diagram for CloudChain
Class Diagram for CloudChain
Component Diagram for CloudChain
Sequence Diagram for the Blocking Mechanism
Deployment Diagram for CloudChain

U W N =

1 Product Description

CloudChain is a peer-to-peer file sharing platform that has blockchain reinforced consensus
functionalities. What makes cloudchain different from usual P2P systems is that via these func-
tionalities, features that traditional P2P systems do not possess due to lack of a trusted main
entity (which breaks the P2P concept and may not be favorable) can be implemented. Along with
the blockchain basis, CloudChain also provides most prominent two of these:

e Authentication: Traditional P2P protocols do not support scenarios for files shared be-
tween only certain entities. The concept of a user/group does not exist.

e Negotiations: Commonly, the only reason that a peer keeps sharing a file is that the peer
benefits from the content itself or it being distributed. This benefit could be shifted to other
assets with the addition of a blockchain (such as money, extra storage etc.), agreements are
possible.

These features are realized by the contracts that run inside the blockchain (see Section 2 for more
information about the out-of-system entities that CloudChain interact), that run on a seperate
P2P network from the the network that files are shared (more information in Section 3). Basically,
the file sharing network is responsible of pushing/pulling files while the contracts confirm, validate
and broadcast the details and meta-data of these operations.

2 High Level System View

Ethereum Blockchain Other Cloudchain Instances

+Metadata

+File and Metadata Transfer
Cloudchain
+Metadata and Identi ification

+Retrieves Fies

Storage and Retrieval

+Storgs Files

Cloudchain User

;

Human

Figure 1: Context Diagram for CloudChain

A context diagram for CloudChain can be seen above. CloudChain consists of a standalone
program, called a ” CloudChain node” installed on the users computer. A CloudChain node is part
of the CloudChain P2P network and communicates with other nodes to store/retrieve files from
others. CloudChain nodes also interact with the Ethereum[1] blockchain through the use of an
Ethereum client in order to store/retrieve metadata about the files stored in the network and for
identity, metadata and signature verification.

3 Overall Design

3.1 Architecture

Data
Message
+add_message() ContractProxy
+serialize() +handle_messages()
+deserialize() +get_holders()

CloudChainCLI e FileSender Filelnfo SignedHashTableProxy
+do_get _file() prm +put_file() +get client file info key()| = Hjsh;eglelnb
:SE_%LEH!:% +put_file() Hrel hoklers(+get_hashtable_cache()
+do_guid() +get_nodes() +put_filelnfo()
+do_listfiles() +g§td_”0dd9_{']P0 FileReceiver +pLli_:ws{saswgn_both(]

i " +add_node St Ent +put_hosts
133—2325["iﬁredﬁi'éiiiiigso +send_message() +geL_file() ey
+do_shelll) }andcast meiage +get_chunks_from_holder()
Listener Filelnformation
+handle() +add_file()
+handle_message() +remove_file()
+change_file_path()
+get_file_path()

+save_info()

Figure 2: Class Diagram for CloudChain

A CloudChain node consists of the classes which can be seen from the Figure 2 and 3.

When a user starts a CloudChain node, one instance of Node and one instance of CloudChainCLI
are created. CloudChainCLI is responsible for delivering user’s commands to Node by calling its
methods.

Node class manages all operations based on a CloudChain node. It creates an instance of
Listener, which listens requests from other nodes and do relevant actions, an instance of Data
which is basically the list of received messages and an instance of FileInformation which maps
files on CloudChain with their local paths. Also, in every get file and put_file call, one instance
of FileReceiver and FileSender are created respectively.

Data holds a list of Message instances. Message is basic encapsulation of request payloads
between clients. It serializes objects to binary data and deserializes binary data to objects.

Contract

FileReciever

Node Filelnfo

Cloudchain CLI /C)’—) @,
commands WStﬂrageEntry
O>\ FileSender
O chunks

messag

ContractProxy

Listener

Figure 3: Component Diagram for CloudChain

FileSender and FileReceiver read from and write to the Ethereum blockchain by the help
of SignedHashTableProxy, which is a subclass of base class ContractProxy. The data coming
from the blockchain is encapsulated in FileInfo and StorageEntry instances.

The ContractProxy controls the transactions to and from the blockchain. It caches the meta-
data table on the blockchain so that unnecessary transactions are avoided. Also it has blocking
capabilities to force synchronicity, via event mechanisms supplied by Ethereum contracts. The
sequence diagram of this process is shown in Figure 4.

Calling Entity Contract Proxy Contract Blockchain

1 :transaction request

>

2 : make transactions

>

3 - make transactions if needed

4 : transactions mined
e ee e e e e eennaas SRR LR R EEEEEEEEE

5 : event fired -

6 : request storage contents

: 3
é -
i 8:return storage contents T - get storage contents -F

Figure 4: Sequence Diagram for the Blocking Mechanism

After a transaction request is made to the proxy, the proxy blocks the call until the transaction
is mined if requested. There are events coupled in the contract for each storage altering function

of the contract. For example, the SignedHashTable contract has an event coupled to the function
for registering entries to the table. After the transaction is made with the contract, the verification
takes some time due to the nature of the blockchain (mining, distrubution of blocks in the network
etc.). After the validation of the transaction, the contract fires an event which is listened by the
ContractProxy. Upon receiving the event, ContractProxy pulls the modified area in the storage,
updates the cache, and returns the transaction result.

3.2 Deployment

adevices
Client
g CloudChain
A
+Web3 API
W
g geth

Figure 5: Deployment Diagram for CloudChain

As mentioned before, CloudChain is distributed. So, there are no servers. The only device on
which CloudChain is deployed is client PC.

Two programs needs to be deployed to devices: CloudChain and its dependency geth[2]. geth
is the official client for interacting with Ethereum network. It allows the user to make and examine
the transactions, also to do mining.CloudChain interacts with geth via Web3 API, specifically its
Python wrapper web3.py|[3].

4 Alternative Design Options

4.1 Custom Blockchain

Implementing a custom blockchain technology as opposed to using an existing smart contract
platform like Ethereum was an option and it could have several advantages such as:

e Being domain specific and not necessarily being Turing-complete could reduce the attack
surface for security bugs.

e Data storage could better be optimized for specific needs of CloudChain, making the blockchain
layer more scalable.

However, we chose not to implement our own blockchain for reasons such as:

e Implementing a blockchain itself is a difficult task that requires a lot of effort and we wanted
to focus our effort not on building another blockchain but building a robust file storage
network which uses blockchain for some of its core functionality.

e By not being a developer but being a user of the blockchain technology, we could still
benefit from the technological improvements in the space without needing to expend extra
development effort, provided we keep a simple and clear interface between CloudChain and
the blockchain.

4.2 Partial File Storage

Currently, when a file is stored in multiple hosts, the file is stored in its entirety in each of
the hosts. An alternative option would be to make it so that it is possible to store a fraction of
the chunks in a single host and spread the file across multiple hosts. However, this required us to
store a mapping between each host and chunk hash on the blockchain, which would significantly
increase the size fo the data on the blockchain, which is why we discarded this model for a simpler
one.

References

[1] Ethereum, a blockchain framework. Online: https://github.com/ethereum/wiki/wiki/White-
Paper (Retrieved on 01.20.2018)

2] Ethereum Go Client, go-ethereum (geth). Online: https://github.com/ethereum/go-ethereum
(Retrieved on 01.20.2018)

[3] Web3.py, an RPC interface for geth. Online: https://github.com/ethereum/web3.py (Retrieved
on 01.20.2018)

	Table of Contents
	List of Figures
	Product Description
	High Level System View
	Overall Design
	Architecture
	Deployment

	Alternative Design Options
	Custom Blockchain
	Partial File Storage

	References

