
COLLABORATOR DESIGN OVERVIEW DOCUMENT

The purpose of this document is to clarify what is targeted by developing the
project Collaborator. The sections of this document will explain the fundamental
points with details on certain topics in the development phase of the project. The
main subject that the project takes action is the human – robot collaboration and
the means to improve it. Our special aim is to develop an application that allows
the operation of both human and robot workers in the same workspace through a
simple visual system support.

1. Product Description

The product of interest in this project is a robot with features that enables it to
work with human workers in the same shared workspace – namely UR5. These
features are centered around the data observed via the sensors that the robot
possesses. These sensors usually triggerred by the existence of enough force to
be exerted on them. If the force threshold is exceeded, the robot will enter an
emergency stop state assuming that the robot is doing physical damage and to
prevent it from doing more damage.

The collaborative feature of this robot is based on the ability that the robot can
avoid causing too much damage via signals from its sensors, unlike many
old-fashioned robots that needs a workspace isolated from humans in order to
work effectively. Despite the collaborative features of our robot, the problem of
making contact to acknowledge that some other entity exists in the shared
workspace is not solved. The aim of this project is to eliminate the necessity of
making a contact.

The chosen approach to solve this problem is to integrate another sensor that is
actually external to the robot. This sensor is responsible for being the ​eyes​ of the
robot in the shared workspace. To put it in more technical terms, the external
sensor(s) will provide the current state of the dynamic shared workspace
environment to some extent (i.e. bounded 3D volume of the environment) in real
– time to the robot agent for it to process it and plan its movements more
effectively in terms of avoiding collision. Briefly, the point of improvement of

human – robot cooperation is an external sense of vision for the robot to be
integrated to it.

2. High Level System Design

The following ​Figure 1​ demonstrates the context that the robot of interest in this
project will perform its tasks:

Figure 1 – The Context of the Robot’s actions

As it is mentioned, the collaborative robot will work in a shared workspace with
a number of human workers. For the sake of simplicity, the human entities are
demonstrated as 1 actor in the shared workspace in the figure above. The
ordinary sequence of events in this context are the following:

● The Kinect Sensor will perceive/sense the state of the environment and
send the image to the module that controls the Robotic Arm – done
periodically.

● The Robotic Arm will process this environment data and perform motion
planning with taking other entities into consideration when planning – the
motions are towards entities named as Target. The boundary of the space
that the Robotic Arm will perform motion planning is carried in the
Environment Data generated and sent by Kinect Sensor.

In this Sense-and-Act cycle, the Robotic Arm will plan its motions with collision
avoidance. The static entities in the environment are tagged as Target, whereas
the dynamic ones are tagged as Human Worker. In the shared workspace,
Human Worker can perform random sequence of actions which the Robotic Arm
has to react properly to avoid any damage and reach its goal.

3. Overall Design

Figure 2 ​illustrates the overall design of the project. There are 3 main
components to explain. Perception and Motion Planning components are
software-dependent, whereas UR5 Controller is directly hardware-dependent.
Overall application runs in a continuous manner - in a loop - as all embedded
systems do.

Figure 2 - Components and Modules

From the Process viewpoint, Perception module takes a snapshot of the
environment on a regular basis (each 50 ms). At each interval, the environment
must be contextualised in terms of the distinct Target objects, environment
boundaries and Human workers. Image Processor submodule of Perception

module is responsible for the contextualization of the real-world through object
and boundary detection. Motion Planning module uses this processed
information to properly plan physical motions for UR5 Controller. The rest of
the application flow only depends on the communication between main PC and
the UR5 Controller. Motion Planning admits the proper commands for action to
UR5 Controller. Finally, the UR5 Controller executes the physical motion.
Acknowledgement of robotic arm motion and human worker motion are
differentiated for logical purposes. In reality, they don’t have distinct functions
or submodules to deliberately inform the Perception module. Our assumption
lies on top of the fact that the Perception module will already record the scene in
a continuous manner. Therefore, there is no need for any asynchronous
informative routines.

Figure 3 - Development Phase

Figure 3 ​represents the Development Diagram. One can better understand the
specific tasks each Work Package - major module - possesses. An overall
description of the whole picture should first specify what Kinect Calibration
means. We are using Kinect as our visual sensor, hence we gave the name

“Kinect Calibration” to the process. Another project might use another visual
sensor -even a basic camera- which provides depth and color information of any
image at its basic level of features. They all share the common prerequisite - that
is calibration. After calibration is done, Image Processing specific tasks come.
They include a wide range of Computer Vision functionality to be accurately
implemented (or adjusted when the required functionality is available in
OpenCV and etc.) like Object Detection.

After all non-trivial environment information is extracted, the simulation
environment, which our Motion Planning module operates in, is reconstructed
through the useful information. The two asterisk(**) that follow the name of
module is added to avoid possible disambiguities related to activity. The
rationale behind this processing is quite straightforward. However to formally
put it, we simply apply a subset operation on the raw environment information
(includes everything viewable in the workspace) to get only the information we
need - that is objects, boundary conditions and human pose -. Successful
generation of the simulation environment forwards application into Motion
Planning pipeline. In this pipeline; cartesian space is sampled through a planning
algorithm, inverse kinematics of the cartesian points in the Point trajectory is
computed and the motions are generated through some post-processing of the
Joint trajectory computed in the previous step, respectively.

Final part is related with the Motion command generated by the software,
Perception + Motion Planning modules . This motion command is forwarded to
a Watchdog system that purifies the received quantities. If any hazardous
command is received from the software, this system applies necessary
treatments to eliminate the hazards. This system provides the safety and
reliability of the application aside with the software-specific measurements.
Finally processed motion command is forwarded to the hardware, UR5 robotic
arm.

4. Alternative Design Options

Another design option for Perception module that we thought about is using
only a speech recognition package instead of Perception module. However, in
that case, we won’t be able to recognise obstacles for UR5. For example, when
the robot is interrupted, it may face an obstacle while exiting from shared area.
And shared area will be more hard coded with using only a speech recognition
package. With our Perception module, UR5 is able to detect shared area
automatically and detect obstacles by creating a point cloud with Kinect for
Motion Planning.

Another design option for Motion Planning module is that using UR5’s own
motion planner. UR5 has features like going a given end-effector position.
However, in that case, UR5 cannot give attention to obstacles when planning its
motion. In our Perception+Motion Planning design, UR5 is recognising
obstacles by Perception module and planning its motion with giving attention to
obstacles. Then, we think that it is the best choice for our project design.

In the beginning of Perception module, we tried out to implement image
processing functions manually. However, It took too much time to implement
and our own algorithms are not optimized. In other words, our manual
implementations do not meet our performance expectations from Perception
module.

One more design option for Perception module is that defining transformations
manually, namely table-to-Kinect transformation. It is very hard to configure
Kinect’s pose manually. Because, even one degree or one millimeter error
causes too much errors in calibration. Then, we decided to use calibration with
pattern.

One final design option is force sensor as described in the introduction part. It is
already embraced by many industrial and research groups. Its disadvantage is
that it recognizes an obstacle after hitting it. That would constraint the overall
design in varying degrees. For example, we cannot give velocities with even
medium magnitudes. Among other things, vision overcomes the haptic behavior
in terms of planning and perception. That’s why we have embraced such an
approach. Consequently, it is much safer and reliable, easy-to-setup and most
importantly has the more sophisticated features.

