
PHOTOCACHE

SOFTWARE DESIGN
OVERVIEW DOCUMENT

Berkay AKYAZI Ömercan GÖKKKAYA

2035558 2035954

Veli Özgür YILDIZ Ali BAYRAMÇAVUŞ

2036366 2035723

1 Introduction

This document is prepared by following the IEEE STD 1016-2009. This document
contains content and organization for software design details and devolopment way of
PhotoCache project. The details and contents are represented by using UML context,
class, component and deployment diagrams.

1.1 Product Description

Our phone are not merely cameras that we record our valuable moments, they are
also albums through which we can share these moments with friends. However, Phones
come with extremely limited storage options, and most people often opt to pay hundreds
of dollars to get some more storage. Nevertheless, the phone storage fills up pretty fast,
and we will provide a solution to this problems.

This project aims to develop a ”gallery” application running on the phone and a
server running on a desktop that would essentially use of the phone as a ”cache” for all
the photos that are stored on the users desktop ”server”. The system will provide four
modes:

• When the phone gets a wi-fi connection to the server, it automatically uploads all
the new photos to the server. No photos are deleted in this process.

•When the phone storage gets low, the photos that are back-upped are automatically
deleted to create space for the new shots automatically. Thumbnails for the deleted
photos are kept on the phone.

• The gallery app on the phone keeps track of the access statistics for the photos,
and uses this information to decide on which photos be deleted. The app will use the
on-board storage on the phone as a cache for the photos stored on the server. Frequently
accessed photos will never be deleted from the phone, while photos that are not accessed
will eventually be deleted (reduced to a thumbnail) to create space for new photos.

• The gallery app will allow the pinning of photos to prevent their deletion as well
as provide options for delete from phone and delete from everywhere and delete from
server.

• If the server is available online on the internet, the phone should be able to fetch
the full-resolution version from the server to the phones storage.

1

2 References

This document is created by using references:

• IEEE International Standards Document: IEEE Std 1016-2009 IEEE Stan-
dard for Information TechnologySystems DesignSoftware Design Descriptions

3 Glossary

IEEE : Institute of Electrical and Electronics Engineers

UML: Unified Modeling Language

DBMS : Database Management System

Content management : a set of processes and technologies that supports the collec-
tion, managing, and publishing of information in any form or medium.

Front-end web development : the practice of producing HTML, CSS and JavaScript
for a website or Web Application so that a user can see and interact with them directly.

Subclass : Child class inheriting attributes and methods from super-class.

Super-class : Parrent Class

HTTP : (Hypertext Transfer Protocol) functions as a requestresponse protocol in
the clientserver computing model .

TCP/IP : Transmission Control Protocol (TCP) ve Internet Protocol(IP) are used for
secure data transfer.

UDP : User Datagram Protocol is used for data transfer.

Hole-Punching : Hole punching is a technique in computer networking for establish-
ing a direct connection between two parties in which one or both are behind firewalls
or behind routers that use network address translation (NAT).

JSON : (JavaScript Object Notation) is a lightweight data-interchange format. It is
easy for humans to read and write. It is easy for machines to parse and generat

Authentication : Authentication is act of confirming the truth of user or data.

MySQL Workbench : MySQL Workbench is a unified visual tool for database ar-
chitects, developers, and DBAs. MySQL Workbench provides data modeling, SQL
development, and comprehensive administration tools for server configuration, user ad-
ministration, backup, and much more.

2

4 Architectural Views

4.1 Context View

Figure 1:Context Diagram of the Project

4.1.1 User Interface

We have two User Interfaces. One of them is on the Android Device and the other one
on the Desktop Device.

4.1.2 Third Party API

We uses Google OAuth 2.0 API for the Desktop Authentication system and Google
Sign-In API for the Android Application LogIn System. Google Analytics is integrated
with the central server in order to track the server requests.

4.1.3 Software Interface

• We have used MySQL DBMS for the Central Server and SQLlite DBMS for the
Android and Desktop Clients.

• We have used glassfish server service as the Java Web Framework. Glassfish server
handles all the requests and responses.

• All context management operations and backend data processes are handled with
JAVA implementations.

• Google Authentication service is used as Sign-in/Sign-up systems.

3

• We have used UDP-Hole Punching and uPnp for creating P2P communication
between Android and Desktop devices.

4.2 Composition View

The composition viewpoint of the PhotoCache system is showed by UML Component
and Deployment diagrams given below.

Figure 7:Component Diagram

Central Server: Central Server is only used for storing user informations and pairing
the user’s Mobile and Desktop devices. Central server stores user’s id, name, e-mail,
devices etc. in the MySQL database. Also, it stores port, local and remote hosts of the
user when user’s devices become online and passes these information to the other online
devices of the user in order to enable them to create smooth pair-and-forget backup
process.

Google Authentication API: Google Authentication system is used for authenti-
cating the users and identifying them. Both Android and Desktop devices take Access
Token from Google Authentication API after authentication process.

4

Android Application: Android application is the source of every data in the
system. The application authenticates by Google API and notifies the server about
its information (username, e-mail, device type etc.) It will automatically backups the
photos and videos into Desktop Device when it has wi-fi connection. It also keeps track
of the free phone storage and access statistics for the photos, an also examines the
user behavior in order to decide which photo should be replaced with its thumbnail.
Furthermore, android application enables users to fetch back their old photos from
Desktop device by using its thumbnail. Also, android application stores backed-up
media in the SQLite Database in its local storage. This database is always synchronized
with the Desktop database.

Desktop Application: Desktop Application consist of two system. One of them is the
background service which creates a P2P communication between Android application
and Desktop Server. And the other one is the Graphical User Interface that enables
users to access their backed-up photos and videos. Desktop app. also uses Google
Authentication system and notifies the central server after the authentication process.
After it creates a P2P connection with the Android Application, it begins to listen the
commands, given by Android Application. For example, some commands are backup
media or recover media. Also, desktop application stores backed-up media in the SQLite
database.

5

Figure 8:Deployment Diagram

Central Server only corresponds to authentication validation and pairing. There is
no media which is transmitted over the Central Server. We have glassfish server that
works on the central server. It handles HTTP/ HTTPS requests.

Android corresponds to keep tracking the phone. We have called this operation Smart
Caching. Android app decides which media is stored or deleted.

Desktop corresponds to store the backed-up media. All the media and the databases
are encrypted for extra security.

Backup/Recover Operations are implemented by using UDP hole punching when
the devices are connected to the different wi-fi networks and client-server communica-

6

tion when they are connected to the same network (Desktop device acts as a server and
android device acts as a client in this case).

Design Rationales:

• HTTPS ensures secure connection between Central Server and Android/Desktop
client. This protocol guarantees safety of the exchanged data, protection of the user’s
privacy and authentication of the website.

• MySQL ensures security of user data because MySQL is globally renowned for
being the most secure and reliable database management system and it is also used in
popular web apps like WordPress, Facebook and Twitter.

• MYSQL has high-speed transactional processing system so it meets our system
functionality constraints.

• MySQL also reduces the cost of the project because it is open-source.

• We have implemented secure and reliable data transfer over UDP which does not
provides any features such as security or reliable data transfer but provides faster and
simpler solution.

7

4.3 Information View

Figure 9:Class Diagram

4.3.1 Central Server

• User Table

It stores userID, accountID which Google Authentication API provides, name and email
address.

• Device Table

Since user can have multiple devices we need to store all of them separately. It stores
userID, deviceID, deviceType (Desktop, Android), macAddress. MacAddress is used
as unique identifier for devices.

• Session Table

It stores which user is online and waits for its pair. The attributes are userID, devi-

8

ceID, localHost (IP), remoteHost (IP), port, loginDateTime (time stamp at which user
become online). After user’s devices are paired, the entries of the devices are removed
from the Session Database.

4.3.2 Android Client

• User Table

It stores userID, deviceID, accountID, name, email. We need this table since there
could be multiple user which currently uses the device.

• Album Table

It stores all the albums in the android device. It stores userID, deviceID, albumPID,
name, path, mediaCount, dateModified, backupFlag(used to indicate whether the al-
bum is backed-up or not.)

• Media Table

It stores the media info if the user changes the media’s flags. The flags are storeFlag
which shows the media is still stored in the phone or not, pinnedFlag which shows
whether user is pinned the media or not and backUpFlag shows is the media backed up
or not. Also Media Table stores, IDs, media name, path, size, creation date, orientation,
mime type(jpg, png, mp4 etc.), albumName.

4.3.3 Desktop Client

• User Table

It stores userID, deviceID, accountID, name, email. We need this table since there
could be multiple user which currently uses the device.

• Album Table

It stores all the albums in the android device. It stores userID, deviceID, albumPID,
name, path, mediaCount, dateModified, backupFlag(used to indicate whether the al-
bum is backed-up or not.)

• Media Table

It stores backed-up media info. Media Table stores, IDs, media name, path, size, cre-
ation date, orientation, mime type(jpg, png, mp4 etc.), albumName, storeFlag, pinned-
Flag.

4.4 Alternative Design Options

• We may use Google Drive or another cloud service as a intermediate layer for
transferring media between devices. But, we want to give full privacy to the users.
However, these services forces the users to give up their privacy by storing them in the
cloud.

9

• We may develop Desktop Application with C++. It will be faster but it could be
much more hard to implement, and problematic to compile on the different operating
systems.

10

	Introduction
	Product Description

	References
	Glossary
	Architectural Views
	Context View
	User Interface
	Third Party API
	Software Interface

	Composition View
	Information View
	Central Server
	Android Client
	Desktop Client

	Alternative Design Options

