
Middle East Technical University • 19 January 2019 • Group 20

CENG 491 - Design Overview
Document

Group 20 - (GRT) GPU based Ray Tracing

Supervisor : Asst. Prof. Ahmet Oğuz Akyüz

Proposer : TaleWorlds Entartainment, Murat Türe

Bariş Suğur, Abdullah Mert Tunçay, Zumrud Shukurlu, Batuhan Bat

I. Product Description

Our GPU based Ray Tracing API is based on the usage of both the advantages of the ray tracer
rendering algorithms on shading and reflectance and the advantages of the GPU thread structures
in parallel programming. So our GPU based Ray Tracer API uses latest sampling methods and
acceleration structures with the NVIDIA CUDA toolkit to reach real time performance. In addition
to these, this product uses masking algorithm to separate parts of the scene where ray tracing will
be used and render small to medium size scenes in real time with high tier GPUs.

Our product aims to solve the famous Global Illumination problem in Computer Graphics. Global
illumination is a process that simulates indirect lighting, like light bouncing and color bleeding.
There are two types of illumination. Direct illumination involves the case when light rays bounce
only once from the surface of an object to reach the eye. On the other hand, indirect illumination
involves light rays which bounce off of the surface of an object before reaching the eye. So some
surfaces are not exposed to any light source directly, but yet they are still not completely black.
Because these objects receive some light as an effect of light bouncing from surface to surface. So
global illumination involves simulating direct plus indirect illumination. Simulating both effects
is important to produce realistic images. In addition, while we are creating realistic images, our
product needs to handle this part in real time. So accelerating the rendering algorithm that can
approximate to real time will be our other problem in our product.

Our GPU based Ray Tracing API involves hybrid path tracing which consists of both forward ray
tracing and backward ray tracing. While forward ray tracing follows from light source to an object,
backward ray tracing follows from object to the light source. The indirect lighting which is the
main problem in the global illumination problem is solved by the backward ray tracing method.
In backward ray tracing, an eye ray is created at the eye; it passes through the view plane and
into the world. The first object the eye ray hits is the object that will be visible from that point of
the viewplane. After the ray tracer allows the light ray to bounce around, it figures out the exact
coloring and shading of that point in the viewplane. By using this method, we are able to handle
the indirect part of the global illumination. After that we are using masking algorithm to make
this calculation for restricted part of the image. While we are calculating these parts, we are using
CUDA Toolkit for GPU programming. Main objective of GPU programming can be defined as
making calculations in parallel by using CUDA threads. Each thread be assigned to one pixel
and each of these pixels are calculated in parallel. This type of implementation gives us a major
advantage as we try to make our calculations in real time.

In our product’s development process, we also used Unity as the external game engine for
managing several operations. These operations are scene loading, object management and basic

1



Middle East Technical University • 19 January 2019 • Group 20

frame rendering. So our product is going to be a Unity-based API. But since these operations do
not form the main part of the project, it gives us the chance to configure our product to any other
game engine as long as it provides the functionality our product requires.

II. High Level System View

User Unity Ray Tracer
request rendering send scene info

send imagedisplay image

Figure 1: Context Diagram

In the context diagram above, the relationships and communications of the ray tracer with Unity
and User is shown. It can be clearly seen that our implementation of ray tracer does not interact
directly with the user. Instead our implementation acts as a background feature that Unity
provides to user, which can be turned on and off by the user, but other than that, all relations of the
ray tracer is with Unity. Since no such interface is designed for the user, all required information
comes from Unity to the ray tracer as seen above. We have use some built-in functions Unity
provides to get the necessary information for our ray tracer. After ray tracer finishes the execution
and creates a new image, the new image is sent back to Unity to be displayed. Since our ray tracer
will act like a post-processing effect, our general design is like a loop that will be executed at every
rendered frame, 20-30 times per second to achieve real time performance. In order to achieve this
performance, a masking algorithm is going to be used to reduce the number of pixels which rays
will be generated. This algorithm will again be used with the information sent by Unity.

III. Overall Design

The end product is going to be a Unity-based API because Unity is the most used and popular
game engine exist in the market. Also it can be configured to work in different game engines
too as long as needed configurations are made since general principles for the game engines are
similar. The three major components and their interactions can be described as follows:

• Unity Scene: This is the 3D virtual world that is rendered by Unity and its information is
passed to the ray tracer. As any other game engine, Unity provides an interface for the scene for
making users’ interaction with the scene easier. Our design will work in any small-to-medium
size scene that is supported by Unity.

• Masking Algorithm: This acts as a filter to further increase the performance of the API. The
necessary g-buffers are also passed from Unity to our ray tracer. It will differ from scene to scene,
hence resulting the small performance differences between different scenes. (A scene with lots of
shiny surfaces vs a scene without them)

• Ray Tracer: This is the component where ray tracing calculations are made according to
scene information and masking algorithm. This is also the last part of the design cycle, meaning
that the resulting frame is computed and sent to Unity to be shown to the user.

2



Middle East Technical University • 19 January 2019 • Group 20

Figure 2: Graphical Representation of Overall Design

Every information that our ray tracer needs to render the scene is given from Unity. It is
not possible to interfere with Unity’s own Render Pipeline, our ray tracer has to work as a post
processing effect, meaning that at each frame, ray tracer will run after Unity rendered the scene.
With the information about the scene and g-buffers, ray tracing will begin and end at real-time.
Instead of the rendered scene from Unity, the scene modified by the ray tracer will be shown to
the screen. Since our aim is to make this modification at real-time, ray tracing implementation has
to be done very fast and has little impact on the performance. That is why a masking algorithm is
used to filter the pixels before ray tracing begins.

Figure 3: Component Diagram

3



Middle East Technical University • 19 January 2019 • Group 20

The components of our overall design is illustrated above in the Component Diagram. Our
product can be summarized an additional functionality for Unity and there are two main subsys-
tems that interact with each other. Subsystems, components and interfaces are elaborated in the
following parts.

• Unity : it is the principal interface that our product functions on. We obtain 3D scene as
input from Unity and display the 2D output image in Unity again. Its native language is C#.
There are options in the user interface to customize scene settings, additionally, C# scripts
can be executed to make further adaptations.

• Scene Parser : the parser is a C# script which works as a component of Unity. It gets the
necessary information about the scene through native functions of Unity for C# and writes
them to an XML file to be sent as input to the Renderer.

• Renderer as DLL : It is the second subsystem of the design that renders the scene and
produces the output image. It is implemented in C++ and converted to a Dynamically
Linked Library (DLL) so that it can be merged with and exploited in Unity. It has the
following components:

– Masking Algorithm - this algorithm examines the scene and separates objects with
ideally reflective materials from the rest of the scene. The first is sent into the Ray
Tracer for rendering, and the latter is processed in the Rasterizer.

– Ray Tracer - this component takes objects with mirror reflectance and draws them in
the image.

– Rasterizer - the rest of the scene is handled by rasterizer, which is a more compu-
tationally efficient tool to draw objects in the scene without fine details like ideal
reflectance.

The final output of the components of the renderer is unified and sent to Unity to be
demonstrated.

IV. Alternative Design Options

In the early stages of our discussions regarding the overall design of our project we weighed the
options of using OpenCL/GL or CUDA. Our primary aim has been to provide speed and ease of
use from the very beginning, so we discarded the option of developing with OpenCL/GL as it
would not provide us enough speed compared to CUDA since we will use Nvidia card as GPU.
CUDA lets our program to use the brains of our graphics card as a sub-CPU and it’s relatively
simple to integrate. As CUDA is software based, much of the system must be programmed into
the program’s code, and thus its function can vary or be customized. Since CUDA’s primary
functionality lies in calculation, data generation and image manipulation, your effects processing,
rendering and export times can be greatly reduced. CUDA is also great at light sources and
ray-tracing. All of this means that functions similar to rendering effects, video encoding and
conversion etc. will process much faster.

Another design choice was about determining the best game engine for our purposes. We were
going to proceed with whether Unreal Engine or Unity 3D. After doing some research about
both, we decided to go on with Unity 3D. Firstly, Unity 3D clearly comes out on top because
of the number of assets in its store. It has everything, from animation and GUI generators to
extensions for AI control and ORK Framework for creating RPGs. Hence, with a better asset store,

4



Middle East Technical University • 19 January 2019 • Group 20

we thought that we can develop our project easier and better. Second main reason why we have
chosen Unity 3D over Unreal Engine was the ease of use in terms of the editors and interfaces.
Unity 3D is known for it’s easy to use interface where new developers can start making games
easily. Both interfaces are quite similar, with toolbars and settings within resizable and movable
windows. Unreal’s user interface is quite bloated and complex. It takes more time than Unity 3D
in many aspects. Assets take a long time to import and save, and simple tasks require extra steps.
Unity 3D is fast, and the interface is quick and responsive. That’s why we have preferred Unity
3D instead of Unreal Engine.

Another design choice was about choosing the best programming language for our ray tracer
and integrating our ray tracer to our project with the best approach. Firstly, we have chosen to
write our ray tracer code on C++ because of the nature of the ray tracing concept being prone
to Object-oriented programming itself. For this reason, among all the other languages, we have
chosen C++ as the best option for Object-oriented programming related parts. Secondly, because
of some speed issues, we have decided to integrate our C++ ray tracer to our project by converting
whole code to a single Dynamic Link Library(DLL) file and import that single DLL file to our
project as a component. We have chosen such an approach (converting C++ ray tracer to a single
DLL file) over writing the ray tracer with C#, because C# scripts are compiled into bytecode while
unmanaged DLLs are compiled in machine code. Hence, this would give us observable amount of
speed up where we do our heavy computations while tracing all the rays.

V. Conclusion

Our product will provide a solution for a famous global illumination while providing real time
performance with the help of GPU, acceleration structures and algorithms. It will give us depth of
field, softy shadows and glossy reflections while approximating the performance to real time. In
addition to these, it will provide a Unity based configuration for Unity users. So with the help
of GPU, acceleration structures, sampling methods and external game engine, our product will
give the experience of a real time ray tracer which is involved in the pipeline for the Games and
Rendering applications.

5


	Product Description
	High Level System View
	Overall Design
	Alternative Design Options
	Conclusion

