
1 / 5

 CEng 491 – Project KickOff Document

Abdullah Mert Tunçay
Barış Suğur

Zumrud Shukurlu
Batuhan Bat

7 November, 2018

“GRT” KickOff Document

1 Description

 The number of modern “mixed” renderers that can utilize both rasterization and ray
tracing to get the best performance/quality ratio is very low. NVIDIA’s latest steps in the last few
years to support the DXR and specifically developed hardware is a clear evidence that real time
renderers will involve more and more ray tracing in the future.
 Most renderers that is available to end-users are either offline renderers (can not be
used in real time) or real-time renderers that doesn’t use ray tracing technique at all.
 In our project, we will create a GPU based real time Ray Tracing API that aims to solve
the famous Global Illumination problem. The end product will use a masking algorithm to
separate the parts of the scene where ray tracing will be used and render small to medium-
sized scenes in real time with high tier GPUs. The target audience of the product is Computer
Graphics developers.

2 Master Feature List

1: High Performance
The API will be implemented with CUDA to work on GPU so GPU’s computational power will be
used which will make the end product run much faster compared to a CPU based one.
2: Improved Quality of Lighting
With the added ray tracing technique, the quality of lighting in the render will improve vastly
compared to a direct lighting one.
3: Dynamic Scene Support
Dynamic scenes support will be implemented alongside with BVH structure.
4: Rendering Real Time Dynamic Scenes
Dynamic Scenes will rendered fast enough to reach near real time experience. The run time
performance will be between 20 – 30 fps)
5: Acceleration Structure Technique (BVH) Algorithm
A chosen suitable acceleration structure technique will be implemented to reduce the
computation time.
6: Area and Punctual Light Support
Different type of light sources (area light and punctual light) will be supported in the scenes.

2 / 5

7: Solution for Global Illumination Problem
Using the Monte Carlo path tracing technique the global illumination problem will be solved.
8: Optimal Quality/Performance Ratio
End product will be a hybrid renderer which can utilize both rasterization and ray tracing to get
the best performance and quality.
9: Increased Performance With Sampling
With implementation of the sampling mechanism, the final quality of the image will increase
while keeping the number of samples constant.
10: NVIDIA GPU Support
Because CUDA will be use for GPU implementation, the API will support NVIDIA’s GPUs.
11: Real Time Ray Tracing Renders for Small-Medium Sized Scenes
The end product will render small to medium sized scenes with real time performance (20-30
fps) on high tier GPU’s.

3 Workpackages

In this section, work packages of the project are listed.

WP Term WP title Number of
person-months

1 491 Project planning and architecture design 3

2 491 Proof of concept implementation in CPU 3

3 491 Transferring the implementation to GPU 3

4 491 & 492 Acceleration structure (BVH) implementation on GPU 8

5 492 Monte Carlo Global Illumination 8

6 492 Implementing a sampling mechanism 3

7 492 Testing the performance with offline renderers 2

 Total: 30

Detailed Descriptions of High-Level Workpackages

3.1 WP1 - Project planning and architecture design

In this workpackage, the following functionalities / features / work items will be implemented;

1. Develop the list of master features of the project.
2. Produce project development plan in accordance with Master Feature List.
3. Design the overall architecture of the project.
4. Analyze risks and make a management plan.

3 / 5

5. Prepare the Kick-off Document of the project.
3.2 WP2 – Proof of concept implementation in CPU

In this workpackage, the following functionalities / features / work items will be implemented;

1. Implement a mask algorithm to choose the objects that will be ray traced and apply
rasterization to the rest of the scene.

2. Design a general purpose ray tracing API that uses the mask algorithm in C#/C++ on
Unity.

3. Test the initial implementation of Ray Tracing API using some of the scenes provided by
Unity.

3.3 WP3 - Transferring the implementation to GPU

In this workpackage, the following functionalities / features / work items will be implemented;

1. Research of CUDA (Compute Unified Device Architecture) to understand GPU
programming basics and analyzing example GPU based renderers on Unity.

2. Implementation of the ray tracer on GPU.
3. Comparing the performances of CPU and GPU implementations.

3.4 WP4 - BVH implementation on GPU

In this workpackage, the following functionalities / features / work items will be implemented;

1. Experimenting and finding the optimal acceleration structure algorithm to reduce the
computation time.

2. Integrating the acceleration structure algorithm to our product.
3. Implementation of dynamic scene support.
4. With the BVH structure, dynamic scenes will be rendered in real time.

3.5 WP5 - Monte Carlo Global Illumination

In this workpackage, the following functionalities / features / work items will be implemented;

1. Research on Direct, Indirect Lighting and Light Source Type Monte Carlo
Implementations.

2. Implementing Direct and Indirect lighting by Path Tracing methods.
3. Implementing the support of Light Source Type (object as light sources).
4. Testing and updating the API.

3.6 WP6 - Implementing a sampling mechanism

In this workpackage, the following functionalities / features / work items will be implemented;

4 / 5

1. Research on sampling mechanisms methods such as Light Sampling and Cosine
Sampling.

2. Choosing and implementation of the most suitable sampling method.

3.7 WP7 - Testing the performance with offline renderers

In this workpackage, the following functionalities / features / work items will be implemented;

1. Searching an finding optimal offline renderers (such as Mitsuba etc.) to compare with our
API.

2. Comparing the performances of our product and the chosen offline renderer.

4 Bonus Workpackages
Workpackages given below will be implemented if all mandatory workpackages done before the
schedule.

1. Fur Rendering: Implementation the support of hair like (human hair, animal fur etc.)
objects.

2. Implementation of Recent BVH Techniques: Analyzing the comparison between

different recent BVH techniques and implementing a different BVH.

3. Noise Reduction: Reducing noise in the final image using Image Processing
techniques.

5 Overall Systems Architecture

5 / 5

TimeLine

Risk Assessment

Risk # Description Possible Solution(s)

1 Lack of debugging tools Porting the code to CPU and
testing it there.

2 Not reaching the real time performance in
complicated dynamic scenes

Searching for better BVH or
sampling methods and trying
the execution on higher tier
GPU’s.

