

PENIOT Design Overview Document
The purpose of this document is to clarify and explain design and development phases

of project PENIOT. Respectively, the document will focus on brief product description, high
level system design, overall design and alternative design options in a detailed way. Briefly,
PENIOT is an extensible penetration testing tool for the Internet of Things devices, and the
rest of the document will focus on technical description of it.

1. Product Description

PENIOT is a penetration testing tool for Internet of Things (IoT devices). Penetration
testing is the practice of controlled security testing of a digital system to find possible
security breaches. It is usually done manually by penetration testers, not by dedicated
software. What we are building is a helper tool, a first step for penetration testers that want to
do penetration tests on IoT devices. We are not trying to replace penetration testing
personnel, rather we want to give them a go-to tool to use in the beginning of their work.

We design our attacks for different IoT communication protocols rather than specific
hardware devices. By this way, we make our tool much more general. However, due to time
constraints, among a myriad of IoT protocols we will only choose several important ones. For
example, we implemented MQTT protocol penetration testing functionalities until now.

When finished, our tool will have an easy to use graphical user interface (GUI) that
the user will be able to choose which protocol they want to test. After that, depending on the
protocol, user will feed the necessary parameters and then the user will be asked to choose
the attacks they want to apply. Depending on protocol, PENIOT will offer more than one
type of attack that tests for security breaches. Some of the attacks we employ are fuzzing,
DoS or sniffing attacks (depending on the protocol). Finally, our tool will report the result of
the penetration test attack to the user. Also, our tool will be extendable rather than static. That
is, penetration testers will be able to append their own penetration testing attacks to our tool.

2. High Level System View

In our design, there will be our project PENIOT in the central position. A penetration
tester will interact with PENIOT’s graphical user interface such that s/he selects IoT protocol
of the target device, and then selects which attack will be performed by the tool after giving
necessary information related to device or discovering the properties of the device by means
of other attacks. All the functionality will be implemented in the tool so there will not be a
need for external modules (other than imported libraries, of course).

Also, there will be a device to be tested and it should be functioning normally (in an
isolated environment and normal communication protocol is conducted).After all the setup is
completed, a penetration tester will perform the attacks and get the results or see the actions
of the device under penetration conditions.

Figure 1: The Context Diagram of PENIOT

3. Overall Design

There will be one major component in PENIOT, but there will be four
sub-components to test different IoT protocols and the graphical user interface. From now on,
they will be described in a detailed way.

Firstly, there are four sub test modules which are decided to the IoT protocols for
Zigbee, Bluetooth Low Energy, RPL and MQTT. In each test module, a protocol has at least
one attack which the user can choose in the context of penetration testing. Depends on the
selected attack, we may need to get additional information such as IP address or MAC
address from the user since we need these information to implement them.

Figure 2: Deployment Diagram for PENIOT

Moreover, we can learn much more information by sniffing the network (but also we
can use previously mentioned properties to get information) if the sniffing attack is
implemented or provided by examining valid packets. Example of sample attack procedure
will be explained at the last paragraph of this section. Also, reporting mechanism is planned
to be added for the possible observed results, but for some types of attack, PENIOT may not
be able to produce resulting report since vulnerable target devices could be forced to shut
down or break down in some test cases, which results in losing connection to it. In these
cases, result of the test should be inferred by the penetration tester by observing the target
device rather than being reported by the PENIOT.

Figure 3: Sequence Diagram for performing attack with PENIOT

Graphical user interface (GUI) is the entry point to PENIOT. It enables the user to
choose which protocol is used to test his/her device. According to the selection,
corresponding module will be called. To minimize the dependencies between the
implementations, we decided to have separate modules for each protocol. Moreover, GUI
enables extending PENIOT without affecting other protocol implementations. We planned to
import user defined modules and enable him/her with the own implementation to test target
device.

Also, we may need to use additional hardware related to the selected IoT protocol.
Since some protocols are implemented on lower layers in networking layers, PENIOT needs
adapter hardware to communicate. If they are needed, the hardware for that protocol will be
specified in the respective protocol’s documentation. An example of a case that needs such
hardware is, we can sniff a valid packet and use it to perform a replay attack. Some protocols
needs additional hardware tools such as dongles to sniff communication.

Depending on cases, the report may give a warning message denoting a security
breach or the attack may result in the break down of the tested device. In the second case,
penetration tester may need to infer the result of the attack from the malfunctioning of the
tested device.

4. Alternative Design Options

We could make our tool final, static and non-extendable but this would not be realistic
for several reasons. First of all, this would make PENIOT as a very limited and powerless
tool for its purpose because we will be cover only a small portion of IoT protocols due to
time limitations. Secondly, IoT technologies are quickly evolving and a static tool would be
quickly outdated. Finally, most users of this tool will be people who have good knowledge of
programming (penetration testers) and some of them may be willing to extend this tool in
ways that will suit their needs better.

Another design choice is about the choice of protocols, but this depends more on
available hardware rather than our choice. PENIOT implementation is pretty straightforward.
What we do is choosing the protocols to implement attacks for, studying the protocol and
choosing and implementing some security attacks depending on the weaknesses of the chosen
protocol. We could choose different set of attacks other than those what we planned to do in
future or we could choose very different IoT protocols, however as our tool is extendable
necessary modules can be integrated easily in the future.

From programming perspective, we choose Python as our development programming
language. There are a few good reasons for this. First of all, there are many third party Python
libraries which were developed for IoT protocols. Secondly, being a scripting language,
Python is very suitable for implementing an extendable tool. We could choose another
programming language, but Python stands at an optimal point for the development
ease-functionality trade off.

The main constraint for not having alternative method is the fact that actually
PENIOT will be a penetration test framework such that there will not be much interaction

except for the tester and the device to be tested. Since PENIOT is a encapsulated testing
package, finding possible alternative methods is pretty difficult.

