Wondercoll
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros
_cvkdtree.hpp
Go to the documentation of this file.
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // Intel License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2008, Xavier Delacour, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 // * Redistribution's of source code must retain the above copyright notice,
20 // this list of conditions and the following disclaimer.
21 //
22 // * Redistribution's in binary form must reproduce the above copyright notice,
23 // this list of conditions and the following disclaimer in the documentation
24 // and/or other materials provided with the distribution.
25 //
26 // * The name of Intel Corporation may not be used to endorse or promote products
27 // derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 
42 // 2008-05-13, Xavier Delacour <xavier.delacour@gmail.com>
43 
44 #ifndef __cv_kdtree_h__
45 #define __cv_kdtree_h__
46 
47 #include "_cv.h"
48 
49 #include <vector>
50 #include <algorithm>
51 #include <limits>
52 #include <iostream>
53 #include "assert.h"
54 #include "math.h"
55 
56 // J.S. Beis and D.G. Lowe. Shape indexing using approximate nearest-neighbor search in highdimensional spaces. In Proc. IEEE Conf. Comp. Vision Patt. Recog., pages 1000--1006, 1997. http://citeseer.ist.psu.edu/beis97shape.html
57 #undef __deref
58 #undef __valuetype
59 
60 template < class __valuetype, class __deref >
61 class CvKDTree {
62 public:
63  typedef __deref deref_type;
64  typedef typename __deref::scalar_type scalar_type;
65  typedef typename __deref::accum_type accum_type;
66 
67 private:
68  struct node {
69  int dim; // split dimension; >=0 for nodes, -1 for leaves
70  __valuetype value; // if leaf, value of leaf
71  int left, right; // node indices of left and right branches
72  scalar_type boundary; // left if deref(value,dim)<=boundary, otherwise right
73  };
74  typedef std::vector < node > node_array;
75 
76  __deref deref; // requires operator() (__valuetype lhs,int dim)
77 
78  node_array nodes; // node storage
79  int point_dim; // dimension of points (the k in kd-tree)
80  int root_node; // index of root node, -1 if empty tree
81 
82  // for given set of point indices, compute dimension of highest variance
83  template < class __instype, class __valuector >
84  int dimension_of_highest_variance(__instype * first, __instype * last,
85  __valuector ctor) {
86  assert(last - first > 0);
87 
88  accum_type maxvar = -std::numeric_limits < accum_type >::max();
89  int maxj = -1;
90  for (int j = 0; j < point_dim; ++j) {
91  accum_type mean = 0;
92  for (__instype * k = first; k < last; ++k)
93  mean += deref(ctor(*k), j);
94  mean /= last - first;
95  accum_type var = 0;
96  for (__instype * k = first; k < last; ++k) {
97  accum_type diff = accum_type(deref(ctor(*k), j)) - mean;
98  var += diff * diff;
99  }
100  var /= last - first;
101 
102  assert(maxj != -1 || var >= maxvar);
103 
104  if (var >= maxvar) {
105  maxvar = var;
106  maxj = j;
107  }
108  }
109 
110  return maxj;
111  }
112 
113  // given point indices and dimension, find index of median; (almost) modifies [first,last)
114  // such that points_in[first,median]<=point[median], points_in(median,last)>point[median].
115  // implemented as partial quicksort; expected linear perf.
116  template < class __instype, class __valuector >
117  __instype * median_partition(__instype * first, __instype * last,
118  int dim, __valuector ctor) {
119  assert(last - first > 0);
120  __instype *k = first + (last - first) / 2;
121  median_partition(first, last, k, dim, ctor);
122  return k;
123  }
124 
125  template < class __instype, class __valuector >
126  struct median_pr {
127  const __instype & pivot;
128  int dim;
129  __deref deref;
130  __valuector ctor;
131  median_pr(const __instype & _pivot, int _dim, __deref _deref, __valuector _ctor)
132  : pivot(_pivot), dim(_dim), deref(_deref), ctor(_ctor) {
133  }
134  bool operator() (const __instype & lhs) const {
135  return deref(ctor(lhs), dim) <= deref(ctor(pivot), dim);
136  }
137  };
138 
139  template < class __instype, class __valuector >
140  void median_partition(__instype * first, __instype * last,
141  __instype * k, int dim, __valuector ctor) {
142  int pivot = (last - first) / 2;
143 
144  std::swap(first[pivot], last[-1]);
145  __instype *middle = std::partition(first, last - 1,
146  median_pr < __instype, __valuector >
147  (last[-1], dim, deref, ctor));
148  std::swap(*middle, last[-1]);
149 
150  if (middle < k)
151  median_partition(middle + 1, last, k, dim, ctor);
152  else if (middle > k)
153  median_partition(first, middle, k, dim, ctor);
154  }
155 
156  // insert given points into the tree; return created node
157  template < class __instype, class __valuector >
158  int insert(__instype * first, __instype * last, __valuector ctor) {
159  if (first == last)
160  return -1;
161  else {
162 
163  int dim = dimension_of_highest_variance(first, last, ctor);
164  __instype *median = median_partition(first, last, dim, ctor);
165 
166  __instype *split = median;
167  for (; split != last && deref(ctor(*split), dim) ==
168  deref(ctor(*median), dim); ++split);
169 
170  if (split == last) { // leaf
171  int nexti = -1;
172  for (--split; split >= first; --split) {
173  int i = nodes.size();
174  node & n = *nodes.insert(nodes.end(), node());
175  n.dim = -1;
176  n.value = ctor(*split);
177  n.left = -1;
178  n.right = nexti;
179  nexti = i;
180  }
181 
182  return nexti;
183  } else { // node
184  int i = nodes.size();
185  // note that recursive insert may invalidate this ref
186  node & n = *nodes.insert(nodes.end(), node());
187 
188  n.dim = dim;
189  n.boundary = deref(ctor(*median), dim);
190 
191  int left = insert(first, split, ctor);
192  nodes[i].left = left;
193  int right = insert(split, last, ctor);
194  nodes[i].right = right;
195 
196  return i;
197  }
198  }
199  }
200 
201  // run to leaf; linear search for p;
202  // if found, remove paths to empty leaves on unwind
203  bool remove(int *i, const __valuetype & p) {
204  if (*i == -1)
205  return false;
206  node & n = nodes[*i];
207  bool r;
208 
209  if (n.dim >= 0) { // node
210  if (deref(p, n.dim) <= n.boundary) // left
211  r = remove(&n.left, p);
212  else // right
213  r = remove(&n.right, p);
214 
215  // if terminal, remove this node
216  if (n.left == -1 && n.right == -1)
217  *i = -1;
218 
219  return r;
220  } else { // leaf
221  if (n.value == p) {
222  *i = n.right;
223  return true;
224  } else
225  return remove(&n.right, p);
226  }
227  }
228 
229 public:
230  struct identity_ctor {
231  const __valuetype & operator() (const __valuetype & rhs) const {
232  return rhs;
233  }
234  };
235 
236  // initialize an empty tree
237  CvKDTree(__deref _deref = __deref())
238  : deref(_deref), root_node(-1) {
239  }
240  // given points, initialize a balanced tree
241  CvKDTree(__valuetype * first, __valuetype * last, int _point_dim,
242  __deref _deref = __deref())
243  : deref(_deref) {
244  set_data(first, last, _point_dim, identity_ctor());
245  }
246  // given points, initialize a balanced tree
247  template < class __instype, class __valuector >
248  CvKDTree(__instype * first, __instype * last, int _point_dim,
249  __valuector ctor, __deref _deref = __deref())
250  : deref(_deref) {
251  set_data(first, last, _point_dim, ctor);
252  }
253 
254  void set_deref(__deref _deref) {
255  deref = _deref;
256  }
257 
258  void set_data(__valuetype * first, __valuetype * last, int _point_dim) {
259  set_data(first, last, _point_dim, identity_ctor());
260  }
261  template < class __instype, class __valuector >
262  void set_data(__instype * first, __instype * last, int _point_dim,
263  __valuector ctor) {
264  point_dim = _point_dim;
265  nodes.clear();
266  nodes.reserve(last - first);
267  root_node = insert(first, last, ctor);
268  }
269 
270  int dims() const {
271  return point_dim;
272  }
273 
274  // remove the given point
275  bool remove(const __valuetype & p) {
276  return remove(&root_node, p);
277  }
278 
279  void print() const {
280  print(root_node);
281  }
282  void print(int i, int indent = 0) const {
283  if (i == -1)
284  return;
285  for (int j = 0; j < indent; ++j)
286  std::cout << " ";
287  const node & n = nodes[i];
288  if (n.dim >= 0) {
289  std::cout << "node " << i << ", left " << nodes[i].left << ", right " <<
290  nodes[i].right << ", dim " << nodes[i].dim << ", boundary " <<
291  nodes[i].boundary << std::endl;
292  print(n.left, indent + 3);
293  print(n.right, indent + 3);
294  } else
295  std::cout << "leaf " << i << ", value = " << nodes[i].value << std::endl;
296  }
297 
299  // bbf search
300 public:
301  struct bbf_nn { // info on found neighbors (approx k nearest)
302  const __valuetype *p; // nearest neighbor
303  accum_type dist; // distance from d to query point
304  bbf_nn(const __valuetype & _p, accum_type _dist)
305  : p(&_p), dist(_dist) {
306  }
307  bool operator<(const bbf_nn & rhs) const {
308  return dist < rhs.dist;
309  }
310  };
311  typedef std::vector < bbf_nn > bbf_nn_pqueue;
312 private:
313  struct bbf_node { // info on branches not taken
314  int node; // corresponding node
315  accum_type dist; // minimum distance from bounds to query point
316  bbf_node(int _node, accum_type _dist)
317  : node(_node), dist(_dist) {
318  }
319  bool operator<(const bbf_node & rhs) const {
320  return dist > rhs.dist;
321  }
322  };
323  typedef std::vector < bbf_node > bbf_pqueue;
324  mutable bbf_pqueue tmp_pq;
325 
326  // called for branches not taken, as bbf walks to leaf;
327  // construct bbf_node given minimum distance to bounds of alternate branch
328  void pq_alternate(int alt_n, bbf_pqueue & pq, scalar_type dist) const {
329  if (alt_n == -1)
330  return;
331 
332  // add bbf_node for alternate branch in priority queue
333  pq.push_back(bbf_node(alt_n, dist));
334  push_heap(pq.begin(), pq.end());
335  }
336 
337  // called by bbf to walk to leaf;
338  // takes one step down the tree towards query point d
339  template < class __desctype >
340  int bbf_branch(int i, const __desctype * d, bbf_pqueue & pq) const {
341  const node & n = nodes[i];
342  // push bbf_node with bounds of alternate branch, then branch
343  if (d[n.dim] <= n.boundary) { // left
344  pq_alternate(n.right, pq, n.boundary - d[n.dim]);
345  return n.left;
346  } else { // right
347  pq_alternate(n.left, pq, d[n.dim] - n.boundary);
348  return n.right;
349  }
350  }
351 
352  // compute euclidean distance between two points
353  template < class __desctype >
354  accum_type distance(const __desctype * d, const __valuetype & p) const {
355  accum_type dist = 0;
356  for (int j = 0; j < point_dim; ++j) {
357  accum_type diff = accum_type(d[j]) - accum_type(deref(p, j));
358  dist += diff * diff;
359  } return (accum_type) sqrt(dist);
360  }
361 
362  // called per candidate nearest neighbor; constructs new bbf_nn for
363  // candidate and adds it to priority queue of all candidates; if
364  // queue len exceeds k, drops the point furthest from query point d.
365  template < class __desctype >
366  void bbf_new_nn(bbf_nn_pqueue & nn_pq, int k,
367  const __desctype * d, const __valuetype & p) const {
368  bbf_nn nn(p, distance(d, p));
369  if ((int) nn_pq.size() < k) {
370  nn_pq.push_back(nn);
371  push_heap(nn_pq.begin(), nn_pq.end());
372  } else if (nn_pq[0].dist > nn.dist) {
373  pop_heap(nn_pq.begin(), nn_pq.end());
374  nn_pq.end()[-1] = nn;
375  push_heap(nn_pq.begin(), nn_pq.end());
376  }
377  assert(nn_pq.size() < 2 || nn_pq[0].dist >= nn_pq[1].dist);
378  }
379 
380 public:
381  // finds (with high probability) the k nearest neighbors of d,
382  // searching at most emax leaves/bins.
383  // ret_nn_pq is an array containing the (at most) k nearest neighbors
384  // (see bbf_nn structure def above).
385  template < class __desctype >
386  int find_nn_bbf(const __desctype * d,
387  int k, int emax,
388  bbf_nn_pqueue & ret_nn_pq) const {
389  assert(k > 0);
390  ret_nn_pq.clear();
391 
392  if (root_node == -1)
393  return 0;
394 
395  // add root_node to bbf_node priority queue;
396  // iterate while queue non-empty and emax>0
397  tmp_pq.clear();
398  tmp_pq.push_back(bbf_node(root_node, 0));
399  while (tmp_pq.size() && emax > 0) {
400 
401  // from node nearest query point d, run to leaf
402  pop_heap(tmp_pq.begin(), tmp_pq.end());
403  bbf_node bbf(tmp_pq.end()[-1]);
404  tmp_pq.erase(tmp_pq.end() - 1);
405 
406  int i;
407  for (i = bbf.node;
408  i != -1 && nodes[i].dim >= 0;
409  i = bbf_branch(i, d, tmp_pq));
410 
411  if (i != -1) {
412 
413  // add points in leaf/bin to ret_nn_pq
414  do {
415  bbf_new_nn(ret_nn_pq, k, d, nodes[i].value);
416  } while (-1 != (i = nodes[i].right));
417 
418  --emax;
419  }
420  }
421 
422  tmp_pq.clear();
423  return ret_nn_pq.size();
424  }
425 
427  // orthogonal range search
428 private:
429  void find_ortho_range(int i, scalar_type * bounds_min,
431  std::vector < __valuetype > &inbounds) const {
432  if (i == -1)
433  return;
434  const node & n = nodes[i];
435  if (n.dim >= 0) { // node
436  if (bounds_min[n.dim] <= n.boundary)
437  find_ortho_range(n.left, bounds_min, bounds_max, inbounds);
438  if (bounds_max[n.dim] > n.boundary)
439  find_ortho_range(n.right, bounds_min, bounds_max, inbounds);
440  } else { // leaf
441  do {
442  inbounds.push_back(nodes[i].value);
443  } while (-1 != (i = nodes[i].right));
444  }
445  }
446 public:
447  // return all points that lie within the given bounds; inbounds is cleared
448  int find_ortho_range(scalar_type * bounds_min,
449  scalar_type * bounds_max,
450  std::vector < __valuetype > &inbounds) const {
451  inbounds.clear();
452  find_ortho_range(root_node, bounds_min, bounds_max, inbounds);
453  return inbounds.size();
454  }
455 };
456 
457 #endif // __cv_kdtree_h__
458 
459 // Local Variables:
460 // mode:C++
461 // End: